Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine


Hydroxychloroquine (HCQ) is a lysosomotropic amine with cytotoxic properties. Here, we show that HCQ induces signs of lysosomal membrane permeabilization (LMP), such as the decrease in the lysosomal pH gradient and the release of cathepsin B from the lysosomal lumen, followed by signs of apoptosis including caspase activation, phosphatidylserine exposure, and chromatin condensation with DNA loss. HCQ also induces mitochondrial membrane permeabilization (MMP), as indicated by the insertion of Bax into mitochondrial membranes, the conformational activation of Bax within mitochondria, the release of cytochrome c from mitochondria, and the loss of the mitochondrial transmembrane potential. To determine the molecular order among these events, we introduced inhibitors of LMP (bafilomycin A1), MMP (Bcl-XL, wild-type Bcl-2, mitochondrion-targeted Bcl-2, or viral mitochondrial inhibitor of apoptosis from cytomegalovirus), and caspases (Z-VAD.fmk) into the system. Our data indicate that caspase-independent MMP is rate-limiting for LMP-mediated caspase activation. Mouse embryonic fibroblasts lacking the expression of both Bax and Bak are resistant against hydroxychloroquine-induced apoptosis. Such Bax−/− Bak−/− cells manifest normal LMP, yet fail to undergo MMP and subsequent cell death. The data reported herein indicate that LMP does not suffice to trigger caspase activation and that Bax/Bak-dependent MMP is a critical step of LMP-induced cell death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others



acridine orange

Baf A1:

bafilomycin A1


activated caspase-3


cathepsin B


mitochondrial transmembrane potential




3,3′-dihexyloxacarbocyanine iodide, DN,dominant negative


glyceraldehyde-3-phosphate dehydrogenase

JC-1,5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide; HCQ:



lysosomal membrane permeabilization


mitochondrial membrane permeabilization


plasma membrane permeabilization








viral mitochondrial inhibitor of apoptosis


  • Aillet F, Masutani H, Elbim C, Raoul H, Chene L, Nugeyre MT, Paya C, Barre-Sinoussi F, Gougerot-Pocidalo MA and Israel N . (1998). J. Virol., 72, 9698–9705.

  • Annis MG, Zamzami N, Zhu W, Penn LZ, Kroemer G, Leber B and Andrews DW . (2001). Oncogene, 20, 1939–1952.

  • Biederbick A, Kern HF and Elsasser HP . (1995). Eur. J. Cell Biol., 66, 3–14.

  • Boya P, Cohen I, Zamzami N, Vieira HLA and Kroemer G . (2002). Cell Death Differ., 9, 465–467.

  • Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jäättelä M and Kroemer G . (in press).

  • Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, Amendola A, Nardacci R, Metivier D, Este JA, Piacentini M and Kroemer G . (2001). J. Exp. Med., 194, 1097–1110.

  • Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N and Kroemer G . (2002). J. Immunol. Methods, 265, 39–47.

  • Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A and Kroemer G . (1996). J. Immunol., 157, 512–521.

  • Cohen I, Castedo M and Kroemer G . (2002). Trends Cell Biol., 12, 293–295.

  • Daugas E, Susin SA, Zamzami N, Ferri K, Irinopoulos T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J and Kroemer G . (2000). FASEB J., 14, 729–739.

  • De Duve C and Wattiaux R . (1966). Annu. Rev. Physiol., 28, 435–492.

  • Debatin KM, Poncet D and Kroemer G . (2002). Oncogene, 21, 8786–8803.

  • Ferri KF, Jacotot E, Blanco J, Esté JA, Zamzami A, Susin SA, Brothers G, Reed JC, Penninger JM and Kroemer G . (2000). J. Exp. Med., 192, 1081–1092.

  • Ferri KF and Kroemer GK . (2001). Nat. Cell Biol., 3, E255–E263.

  • Foghsgaard M, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M and Jäättelä M . (2001). J. Cell Biol., 153, 999–1009.

  • Goldmacher VS, Bartle LM, Skletskaya S, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, McFarland EDC, Kieff ED, Mocarski ES and Chittenden T . (1999). Proc. Natl. Acad. Sci. USA, 96, 12536–12541.

  • Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ and Shore GC . (1998). J. Cell Biol., 143, 207–215.

  • Green DR and Reed JC . (1998). Science, 281, 1309–1312.

  • Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, Dive C and Hickman JA . (1999). J. Cell Biol., 144, 903–914.

  • Gross A, Jockel J, Wei MC and Korsmeyer SJ . (1998). EMBO J., 17, 3878–3885.

  • Inbal B, Bialik S, Sabanay I, Shani G and Kimchi A . (2002). J. Cell Biol., 157, 455–468.

  • Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, Nagashima Y, Nakagawara A, Momoi T, Toyoda Y, Kigasawa H, Nishi T, Shirouzu M, Yokoyama S, Tanaka Y and Kuchino Y . (2002). J. Natl. Cancer Inst., 94, 358–368.

  • Kroemer G and Reed JC . (2000). Nat. Med., 6, 513–519.

  • Lai JH, Ho L-J, Lu K-C, Chang D-M, Shaio M-F and Han S-H . (2001). J. Immunol., 166, 6914–6924.

  • Lassus P, Opitz-Araya X and Lazebnik Y . (2002). Science, 297, 1352–1354.

  • Levy-Strumpf N and Kimchi A . (1998). Oncogene, 17, 3331–3340.

  • Lockshin RA and Zakeri Z . (2001). Nat. Rev. Mol. Cell Biol., 2, 545–550.

  • Marmor MF, Carr RE, Easterbrook M, Farjo AA and Mieler WF . (2002). Ophthalmology, 109, 1377–1382.

  • Marsden VS, O'Connor L, O'Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM and Strasser A . (2002). Nature, 419, 634–637.

  • Mathiasen IS and Jaattela M . (2002). Trends Mol. Med., 8, 212–220.

  • Moriyama Y and Nelson N . (1989). J. Biol. Chem., 264, 18445–18450.

  • Munafo DB and Colombo MI . (2001). J. Cell Sci., 114, 3619–3629.

  • Nechushtan A, Smith CL, Lamensdorf I, Yoon SH and Youle RJ . (2001). J. Cell Biol., 153, 1265–1276.

  • Nicholson DW and Thornberry NA . (1997). Trends Biochem. Sci., 22, 299–306.

  • Ravagnan L, Roumier T and Kroemer G . (2002). J. Cell. Physiol., 192, 131–137.

  • Reed JC . (2002). Nat. Rev. Drug Discov., 1, 111–121.

  • Roberg K . (2001). Lab. Invest., 81, 149–158.

  • Schotte P, Van Criekinge W, Van de Craen M, Van Loo G, Desmedt M, Grooten J, Cornelissen M, de Ridder L, Vandkerckhove J, Fiers W, Vandenabeele P and Beyaert R . (1998). Biochem. Biophys. Res. Commun., 251, 379–387.

  • Stoka V, Turk B, Schendel SL, Kil TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V and Salvesen GS . (2001). J. Biol. Chem., 276, 3149–3157.

  • Vancompernolle K, Van Herrewghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P and Grooten J . (1998). FEBS Lett., 6, 150–158.

  • Vieira HL, Belzacq A-S, Haouzi D, Bernassola F, Cohen I, Jacotot E, Ferri KF, Hamel EH, Bartle LM, Melino G, Brenner C, Goldmacher V and Kroemer G . (2001). Oncogene, 20, 4305–4316.

  • Vogelstein B, Lane D and Levine AJ . (2000). Nature, 408, 307–310.

  • Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ . (2001). Science, 292, 727–730.

  • Xue L, Fletcher GC and Tolkovsky AM . (2001). Curr. Biol., 6, 361–365.

  • Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L and Brunk UT . (2002). Proc. Natl. Acad. Sci. USA, 99, 6286–6291.

  • Zaidi AU, McDonough JS, Klocke BJ, Latham CB, Korsmeyer SJ, Flavell RA, Schmidt RE and Roth KA . (2001). J. Neuropathol. Exp. Neurol., 60, 937–945.

  • Zamzami N, Brenner C, Marzo I, Susin SA and Kroemer G . (1998). Oncogene, 16, 2265–2282.

  • Zamzami N, El Hamel C, Muñoz C, Brenner C, Belzacq A-S, Costantini P, Molle G and Kroemer G . (2000). Oncogene, 19, 6342–6350.

  • Zamzami N and Kroemer G . (2003). Curr. Biol., 13, R71–R73.

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B and Kroemer G . (1995). J. Exp. Med., 182, 367–377.

  • Zhao M, Eaton JW and Brunk UT . (2001). FEBS Lett., 509, 405–412.

  • Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B and Andrews DW . (1996). EMBO J., 15, 4130–4141.

Download references


We thank Drs Victor Goldmacher (ImmunoGen, Cambridge, MA, USA) for cell lines, David Andrews (Hamilton University, Ontario, Canada), Nicole Israel (Pasteur Institute, Paris, France), Nathanael Larochette, and Didier Métivier (CNRS, Villejuif, France) for assistance, Dominique Coulaud (CNRS, UMR5826, Villejuif, France), and the NIH AIDS reagents program (Bethesda, MD) for cell lines.This work has been supported by a special grant from LNC, as well as grants from ANRS, FRM, and European Commission (QLG1-CT-1999-00739) (to GK). PB receives a fellowship from the European Commission (MCFI-2000-00943).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guido Kroemer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boya, P., Gonzalez-Polo, RA., Poncet, D. et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927–3936 (2003).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


Quick links