Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Data mining the p53 pathway in the Fugu genome: evidence for strong conservation of the apoptotic pathway

Abstract

The p53 tumour suppressor gene belongs to a small family of related proteins that includes two other members, p63 and p73. Phylogenetic and functional studies suggest that p63 and p73 are ancient genes that have essential roles in normal development, whereas p53 seems to have evolved more recently to prevent cell transformation. In mammalian cells, a plethora of proteins have been found to specifically regulate p53 activity. The genome of the fish Fugu rubripes has been recently published. It is the second vertebrate genome for which the entire sequence is now available. Phylogenetic studies are essential in order to analyse and define signalling pathways important for cell cycle regulation. The presence or absence of a critical member in any pathway can shed light about the evolution of these pathways. The Fugu genome databank has been analysed for several members of the p53 network, including p53, p63 and p73. A good conservation of the network that regulates p53 stability and apoptosis has been found. We also discovered that some cofactors that cooperate with p53 for apoptosis are also well conserved and belong to multigene families not detected in the human genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alarcon-Vargas D and Ronai Z . (2002). Carcinogenesis, 23, 541–547.

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D and Brenner S . (2002). Science, 297, 1301–1310.

  • Bensaad K, Rouillard D and Soussi T . (2001). Oncogene, 20, 3766–3775.

  • Bergamaschi D, Samuels Y, O'Neil NJ, Trigiante G, Crook T, Hsieh JK, O'Connor DJ, Zhong S, Campargue I, Tomlinson ML, Kuwabara PE and Lu X . (2003). Nat. Genet., 33, 162–167.

  • Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM and Abrams JM . (2000). Cell, 101, 103–113.

  • Cachot J, Galgani F and Vincent F . (1998). Comp. Biochem. Physiol. [C], 120, 351–356.

  • Caron de Fromentel C, Pakdel F, Chapus A, Baney C, May P and Soussi T . (1992). Gene, 112, 241–245.

  • Contente A, Dittmer A, Koch MC, Roth J and Dobbelstein M . (2002). Nat Genet, 30, 315–320.

  • Daujat S, Neel H and Piette J . (2001). Trends Genet., 17, 459–464.

  • Derry WB, Putzke AP and Rothman JH . (2001). Science, 294, 591–595.

  • El-Deiry WS, Kern SE, Pientenpol JA, Kinzler KW and Vogelstein B . (1992). Nat. Genet., 1, 45–49.

  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F and Jacks T . (2002). Nature, 416, 560–564.

  • Gilley J and Fried M . (2001). Oncogene, 20, 7447–7452.

  • Goodman RH and Smolik S . (2000). Genes Dev., 14, 1553–1577.

  • Gorina S and Pavletich NP . (1996). Science, 274, 1001–1005.

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F, Hugh B, Graber HU, De Laurenzi V, Fey MF, Melino G and Tobler A . (2001). Cell Death Differ., 8, 1213–1223.

  • Hardy-Bessard AC, Garay E, Lacronique V, Legros Y, Demarquay C, Houque A, Portefaix JM, Granier C and Soussi T . (1998). Oncogene, 16, 883–890.

  • Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P and Brunak S . (1996). Nucleic Acids Res., 24, 3439–3452.

  • Iwabuchi K, Bartel PL, Li B, Marraccino R and Fields S . (1994). Proc. Natl. Acad. Sci. USA, 91, 6098–6102.

  • Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW and Levine AJ . (2000). Proc. Natl. Acad. Sci. USA, 97, 7301–7306.

  • Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N, Getz G, Domany E and Givol D . (2001). Oncogene, 20, 2225–2234.

  • Kartasheva NN, Contente A, Lenz-Stoppler C, Roth J and Dobbelstein M . (2002). Oncogene, 21, 4715–4727.

  • Ko LJ and Prives C . (1996). Gene Develop., 10, 1054–1072.

  • Kostic C and Shaw PH . (2000). Oncogene, 19, 3978–3987.

  • Krause MK, Rhodes LD and Van Beneden RJ . (1997). Gene, 189, 101–106.

  • Lee Y, Sultana R, Pertea G, Cho J, Karamycheva S, Tsai J, Parvizi B, Cheung F, Antonescu V, White J, Holt I, Liang F and Quackenbush J . (2002). Genome Res., 12, 493–502.

  • Levine AJ . (1997). Cell, 88, 323–331.

  • Lin Y, Ma W and Benchimol S . (2000). Nat. Genet., 26, 122–127.

  • Marechal V, Elenbaas B, Taneyhill L, Piette J, Mechali M, Nicolas JC, Levine AJ and Moreau J . (1997). Oncogene, 14, 1427–1433.

  • Mayo L and Donner D . (2002). Trends Biochem. Sci., 27, 462.

  • Melino G, De Laurenzi V and Vousden KH . (2002). Nat. Rev. Cancer, 2, 605–615.

  • Momand J, Wu HH and Dasgupta G . (2000). Gene, 242, 15–29.

  • Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H, Hayakawa T and Nakagawara A . (2002). Mol. Cell. Biol., 22, 2575–2585.

  • Okamoto K and Beach D . (1994). EMBO J., 13, 4816–4822.

  • Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS and Prives C . (2002). Mol. Cell, 9, 761–771.

  • Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, Monden M and Nakamura Y . (2001). Mol. Cell, 8, 85–94.

  • Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C and Kopczynski C . (2000). Cell, 101, 91–101.

  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG and Lozano G . (2001). Nat. Genet., 29, 92–95.

  • Piette J, Neel H and Marechal V . (1997). Oncogene, 15, 1001–1010.

  • Polyak K, Waldman T, He TC, Kinzler KW and Vogelstein B . (1996). Gene Develop., 10, 1945–1952.

  • Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T and Lu X . (2001). Mol. Cell, 8, 781–794.

  • Schumacher B, Hofmann K, Boulton S and Gartner A . (2001). Curr. Biol., 11, 1722–1727.

  • Sherr CJ and Weber JD . (2000). Curr. Opin. Genet. Dev., 10, 94–99.

  • Shikama N, Lee CW, France S, Delavaine L, Lyon J, KrsticDemonacos M and LaThangue NB . (1999). Mol. Cell, 4, 365–376.

  • Shvarts A, Steegenga WT, Riteco N, vanLaar T, Dekker P, Bazuine M, vanHam RCA, vanOordt WV, Hateboer G, vanderEb AJ and Jochemsen AG . (1996). EMBO J., 15, 5349–5357.

  • Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S and Mak TW . (2001). Mol. Cell, 8, 317–325.

  • Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ and Davis RW . (2002). Nat. Genet., 31, 400–404.

  • Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y and Nakamura Y . (2000). Nature, 404, 42–49.

  • Thisse C, Neel H, Thisse B, Daujat S and Piette J . (2000). Differentiation, 66, 61–70.

  • Thompson JD, Higgins DG and Gibson TJ . (1994). Nucleic Acids Res., 22, 4673–4680.

  • Tokino T and Nakamura Y . (2000). Crit. Rev. Oncol. Hematol., 33, 1–6.

  • Vogelstein B, Lane D and Levine AJ . (2000). Nature, 408, 307–310.

  • Vousden KH and Lu X . (2002). Nat. Rev. Cancer, 2, 594–604.

  • Wahl GM and Carr AM . (2001). Nat. Cell. Biol., 3, E277–E286.

  • Warbrick E . (1998). BioEssays, 20, 195–199.

  • Woods DB and Vousden KH . (2001). Exp. Cell Res., 264, 56–66.

  • Yang A, Kaghad M, Caput D and McKeon F . (2002). Trends Genet., 18, 90–95.

  • Yang JP, Hori M, Sanda T and Okamoto T . (1999). J. Biol. Chem., 274, 15662–15670.

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW and Vogelstein B . (1999). Proc. Natl. Acad. Sci. USA, 96, 14517–14522.

  • Yu WP, Pallen CJ, Tay A, Jirik FR, Brenner S, Tan YH and Venkatesh B . (2001). Oncogene, 20, 5554–5561.

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH and Levine AJ . (2000). Genes Dev., 14, 981–993.

Download references

Acknowledgements

MLB is supported by a fellowship from the Société Française du Cancer, Association pour la Recherche sur le Cancer and Fondation pour la recherche médicale, KB by a fellowship from the Ligue Nationale contre le Cancer (Comité National). Work in the laboratory of TS is supported by the Association pour la Recherche sur le Cancer, Ligue Nationale contre le Cancer (comité de Paris) and Ministère pour l'enseignement supérieur et la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Soussi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bras, M., Bensaad, K. & Soussi, T. Data mining the p53 pathway in the Fugu genome: evidence for strong conservation of the apoptotic pathway. Oncogene 22, 5082–5090 (2003). https://doi.org/10.1038/sj.onc.1206424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206424

Keywords

This article is cited by

Search

Quick links