Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors

Abstract

DNA nucleases catalyze the cleavage of phosphodiester bonds. These enzymes play crucial roles in various DNA repair processes, which involve DNA replication, base excision repair, nucleotide excision repair, mismatch repair, and double strand break repair. In recent years, new nucleases involved in various DNA repair processes have been reported, including the Mus81 : Mms4 (Eme1) complex, which functions during the meiotic phase and the Artemis : DNA-PK complex, which processes a V(D)J recombination intermediate. Defects of these nucleases cause genetic instability or severe immunodeficiency. Thus, structural biology on various nuclease actions is essential for the elucidation of the molecular mechanism of complex DNA repair machinery. Three-dimensional structural information of nucleases is also rapidly accumulating, thus providing important insights into the molecular architectures, as well as the DNA recognition and cleavage mechanisms. This review focuses on the three-dimensional structure-function relationships of nucleases crucial for DNA repair processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aravind L, Koonin EV . 1998a Trends Biochem. Sci. 23: 17–19

  • Aravind L, Koonin EV . 1998b Nucleic Acids Res. 26: 3746–3752

  • Aravind L, Walker DR, Koonin EV . 1999 Nucleic Acids Res. 27: 1223–1242

  • Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson III DM, Rupp B . 2001 J. Mol. Biol. 307: 1023–1034

  • Beese LS, Steitz TA . 1991 EMBO J. 10: 25–33

  • Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA . 1995 Cell, 80: 813–823

  • Boddy MN, Gaillard PH, McDonald WH, Shanahan P, Yates III JR, Russell P . 2001 Cell 107: 537–548

  • Boddy MN, Lopez-Girona A, Shanahan P, Interthal H, Heyer WD, Russell P . 2000 Mol. Cell. Biol. 20: 8758–8766

  • D'Amours D, Jackson SP . 2002 Nat. Rev. Mol. Cell. Biol. 3: 317–327

  • de Boer J, Hoeijmakers JH . 2000 Carcinogenesis 21: 453–460

  • Farber GK, Petsko GA . 1990 Trends Biochem. Sci. 15: 228–234

  • Fijalkowska IJ, Schaaper RM . 1996 Proc. Natl. Acad. Sci. USA 93: 2856–2861

  • Galburt EA, Chevalier B, Tang W, Jurica MS, Flick KE, Monnat Jr RJ, Stoddard BL . 1999 Nat. Struct. Biol. 6: 1096–1099

  • Goedken ER, Marqusee S . 2001 J. Biol. Chem. 276: 7266–7271

  • Goldsby RE, Lawrence NA, Hays LE, Olmsted EA, Chen X, Singh M, Preston BD . 2001 Nat. Med. 7: 638–639

  • Gorman MA, Morera S, Rothwell DG, de La Fortelle E, Mol CD, Tainer JA, Hickson ID, Freemont PS . 1997 EMBO J. 16: 6548–6558

  • Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA . 1995 Cell 82: 507–522

  • Hadden JM, Declais AC, Phillips SE, Lilley DM . 2002 EMBO J. 21: 3505–3515

  • Hamdan S, Carr PD, Brown SE, Ollis DL, Dixon NE . 2002 Structure (Camb) 10: 535–546

  • Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA . 2001 Cell 105: 473–485

  • Hosfield DJ, Mol CD, Shen B, Tainer JA . 1998 Cell 95: 135–146

  • Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA . 1999 Cell 98: 397–408

  • Hwang KY, Baek K, Kim HY, Cho Y . 1998 Nat. Struct. Biol. 5: 707–713

  • Interthal H, Heyer WD . 2000 Mol. Gen. Genet. 263: 812–827

  • Jencks WP . 1969 Catalysis in Chemistry and Enzymology New York: McGraw Hill pp 111–115

    Google Scholar 

  • Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ . 2001 Genes Dev. 15: 2730–2740

  • Katayanagi K, Okumura M, Morikawa K . 1993 Proteins 17: 337–346

  • Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM . 1995 Science 267: 1178–1183

  • Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK . 2000 Nature 407: 711–717

  • Levin JD, Shapiro R, Demple B . 1991 J. Biol. Chem. 266: 22893–22898

  • Lieber MR . 1997 Bioessays 19: 233–240

  • Ma Y, Pannicke U, Schwarz K, Lieber MR . 2002 Cell 108: 781–794

  • Modrich P, Lahue R . 1996 Annu. Rev. Biochem. 65: 101–133

  • Mol CD, Hosfield DJ, Tainer JA . 2000a Mutat. Res. 460: 211–229

  • Mol CD, Izumi T, Mitra S, Tainer JA . 2000b Nature 403: 451–456

  • Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA . 1995 Nature 374: 381–386

  • Morrison A, Johnson AL, Johnston LH, Sugino A . 1993 EMBO J. 12: 1467–1473

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I, Sanal O, Bertrand Y, Philippe N, Fischer A, de Villartay JP . 2001 Cell 105: 177–186

  • Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ . 2001 Genetics 157: 103–118

  • Murzin AG, Brenner SE, Hubbard T, Chothia C . 1995 J. Mol. Biol. 247: 536–540

  • Obmolova G, Ban C, Hsieh P, Yang W . 2000 Nature 407: 703–710

  • Parikh SS, Putnam CD, Tainer JA . 2000 Mutat. Res. 460: 183–199

  • Petit C, Sancar A . 1999 Biochimie 81: 15–25

  • Pingoud A, Jeltsch A . 2001 Nucleic Acids Res. 29: 3705–3727

  • Prakash S, Prakash L . 2000 Mutat. Res. 451: 13–24

  • Raaijmakers H, Vix O, Toro I, Golz S, Kemper B, Suck D . 1999 EMBO J. 18: 1447–1458

  • Ramotar D, Popoff SC, Gralla EB, Demple B . 1991 Mol. Cell. Biol. 11: 4537–4544

  • Roberts RJ, Cheng X . 1998 Annu. Rev. Biochem. 67: 181–198

  • Shamoo Y, Steitz TA . 1999 Cell 99: 155–166

  • Sharples GJ . 2001 Mol. Microbiol. 39: 823–834

  • Shevelev IV, Hubscher U . 2002 Nat. Rev. Mol. Cell. Biol. 3: 364–376

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JH, Taylor AM . 1999 Cell 99: 577–587

  • Suck D, Lahm A, Oefner C . 1988 Nature 332: 464–468

  • Tsutakawa SE, Jingami H, Morikawa K . 1999a Cell 99: 615–623

  • Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N, Ariyoshi M, Kohda D, Nakagawa M, Morikawa K . 1999b Mol. Cell 3: 621–628

  • Tsutakawa SE, Morikawa K . 2001 Nucleic Acids Res. 19: 3775–3783

  • Vassylyev D, Morikawa K . 1997 Curr. Opin. Struct. Biol. 7: 103–109

  • Wilson III DM, Thompson LH . 1997 Proc. Natl. Acad. Sci. USA 94: 12754–12757

  • Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T . 1992 EMBO J. 11: 3323–3335

  • Yamagata A, Kakuta Y, Masui R, Fukuyama K . 2002 Proc. Natl. Acad. Sci. USA 99: 5908–5912

  • Yang W . 2000 Mutat. Res. 460: 245–256

  • Yoshikawa M, Iwasaki H, Shinagawa H . 2001 J. Biol. Chem. 276: 10432–10436

Download references

Acknowledgements

We regret that the limit of space may have not allowed us to site all works in the field. We thank Kayoko Komori for critical reading of the manuscript and helpful comments. T Nishino is a research fellow of the Japan society for the promotion of sciences. This research was partly supported by NEDO (New Energy and Industrial Technology Development Organization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Morikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, T., Morikawa, K. Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 21, 9022–9032 (2002). https://doi.org/10.1038/sj.onc.1206135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206135

Keywords

This article is cited by

Search

Quick links