Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-myb mutation in the bursa of Fabricius

Abstract

Avian retroviral integration into the c-myb locus is casually associated with the development of lymphomas in the bursa of Farbricius of chickens; these arise with a shorter latency than bursal lymphomas caused by deregulation of c-myc. This study indicates that c-myb mutation in embryonic bursal precursors leads to an oligoclonal population of developing bursal follicles, showing a variable propensity to form a novel lesion, the neoplastic follicle (NF). About half of such bursas rapidly developed lymphomas. Detection of changes in gene expression, during the development of neoplasms, was carried out by cDNA microarray analysis. The transcriptional signature of lymphomas with mutant c-myb was more limited than, and only partially shared with, those of bursal lymphomas caused by Myc or Rel oncogenes. The c-myb-associated lymphomas frequently showed overexpression of c-myc and altered expression of other genes involved in cell cycle control and proliferation-related signal transduction. Oligoclonal, NF-containing bursas lacked detectable c-myc overexpression and demonstrated a pattern of gene expression distinct from that of normal bursa and partially shared with the short-latency lymphomas. This functional genomic analysis uncovered several different pathways of lymphomagenesis by oncogenic transcription factors acting in a B-cell lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5
Figure 7

Similar content being viewed by others

References

  • Abdrakhmanov D, Lodygin D, Geroth P, Arakawa H, Law A, Plachy J, Korn B and Buerstedde J-M . (2000). Genome Res., 10, 2062ā€“2069.

  • Baba TW and Humphries EH . (1985). Proc. Natl. Acad. Sci. USA, 82, 213ā€“216.

  • Barth CF and Humphries EH . (1988). Mol. Cell Biol., 8, 5358ā€“5368.

  • Blume-Jensen P and Humter T . (2001). Nature, 411, 355ā€“365.

  • Brandvold KA, Ewert DL, Kent SC, Neiman P and Ruddell A . (2001). Oncogene, 20, 3226ā€“3234.

  • Brandvold KA, Neiman P and Ruddell A . (2000). Oncogene, 19, 2780ā€“2785.

  • Clurman BE and Hayward WS . (1989). Mol. Cell Biol., 9, 2657ā€“2664.

  • Clurman BE and Porter P . (1998). Proc. Natl. Acad. Sci. USA 95, 15158ā€“15160.

  • Cooper MD, Payne LN, Dent PB, Burmester BR and Good RA . (1960). Histogenesis. J. Natt. Cancer Inst., 41, 373ā€“389.

  • Eckert EA, Beard D and Beard JW . (1951). J. Nat. Cancer Inst., 12, 447ā€“463.

  • Eisen MB, Spellman PT, Brown PO and Bostein D . (1998). Proc. Natl. Acad. Sci. USA, 95, 14863ā€“14868.

  • Goitsuka R, Chen CH and Cooper MD . (1997). J. Immunol., 159, 3126ā€“3132.

  • Gonda TJ, Cory S, Sobieszczuk P, Holtzman D and Adams JM . (1987). J. Virol., 61, 2754ā€“2763.

  • Gong M, Semus HL, Bird KJ, Stramer BJ and Ruddell A . (1998). J. Vitrol., 72, 5517ā€“5525.

  • Grandori C, Cowley SM, James LP and Eisenman RN . (2000). Annu. Rev., Cell Dev. Biol., 16, 653ā€“699.

  • Guarguaglini G, Renzi L, D'Ottavio F, Di Fiore B, Casenghi M, Cundari E and Lavia P . (2000). Cell Growth Diff., 11, 455ā€“465.

  • Hayward WS, Nell BG and Astrin SM . (1981). Nature 290, 475ā€“480.

  • Irwin MS and Kaelin Jr WG . (2001). Apoptosis, 6, 17ā€“29.

  • Jackers P, Minoletti F, Belotti D, Clausse N, Sozzi G, Sobel ME and Castronovo V . (1996). Oncogene, 13, 495ā€“450.

  • Jiang W, Kanter MR, Dunkel I, Ramsay RG, Beemon KL and Hayward W.S . (1997). J. Vitrol., 71, 6526ā€“6533.

  • Kanter MR, Smith RE and Hayward WS . (1988). J. Vitrol., 62, 1423ā€“1432.

  • Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M and Peters JM . (2000). Mol. Biol. Cell, 11, 1555ā€“1569.

  • Kuersten S, Mutsuhito O and Mattaj I. W . (2001). Trends Cell Biol., 11, 497ā€“503.

  • Leprince D, Gegonne A, Coll J, Taisne C, Schneederger A, Lagrou C and Stehelin D . (1983). Nature, 306, 395ā€“397.

  • Marshall AJ, Niiro H, Lerner CG, Yun TJ, Thomas S, Disteche CM and Clark EA . (2000). J, Exp. Med., 191, 1319ā€“1332.

  • Muzi-Falconi M and Kelly TJ . (1995). Proc. Natl. Acad. Sci. USA, 92, 12475ā€“12479.

  • Nason-Burchenal K and Wolff L . (1993). Proc. Natl. Acad. Sci, USA, 90, 1619ā€“1623.

  • Neel BG, Hayward WS, Robinson HL, Fang J and Astrin SM . (1981). Cell, 23, 323ā€“334

  • Neiman P, Payne LN and Weiss RA . (1980). J, Virol., 34, 178ā€“186.

  • Neiman PE . (1994). Adv. Immunol., 56, 467ā€“484.

  • Neiman PE, Ruddell A, Jasoni C, Loring G, Thomas SJ, Brandvold KA, Lee R, Burnside J and Delrow J . (2001). Proc. Natl. Acad. Sci. USA, 98, 6378ā€“6383.

  • Neiman PE, Thomas SJ and Loring G . (1991). Proc. Natl. Acad. Sci. USA, 88, 5857ā€“5861.

  • Neiman P, Wolf C, Enrietto PJ and Cooper GM . (1985). Proc. Natl. Acad. Sci. USA, 82, 222ā€“236.

  • Ness SA . (1996). Biochim, Biophys. Acta 1288, F123ā€“F139.

  • Ouspenski II . (1998). Exp. Cell Res., 224, 171ā€“183.

  • Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM and Varmus HE . (1981). Cell, 23, 311ā€“322.

  • Petersen BO, Wagener C, Marinoni F, Kramer ER, Melixetian M, Denchi EL, Gieffers C, Matteucci C, Peters JM and Helin K . (2000). Genes Dev., 14, 2330ā€“2343.

  • Pfleger CM, Lee E and Kirschner MW . (2001). Genes Dev., 15, 2396ā€“2407.

  • Pizer ES, Baba TW and Humphries EH . (1992). J. Vitrol., 66, 512ā€“523.

  • Pizer E and Humphries EH . (1989). J. Virol., 63, 1630ā€“1640.

  • Prichard CC, Li H, Delrow J. and Nelson PS . (2001). Proc. Natl. Acad. Sci. USA, 98, 13266ā€“13271.

  • Sauer K, Lior J, Singh SB, Yablonski D, Weiss A and Perlmutter RM . (2001). J. Biol. Chem., 276, 45207ā€“45216.

  • Schmidt M, Nazarov V, Stevens L, Watson R and Wolff L . (2000). Mol. Cell. Biol., 20, 1970ā€“1981.

  • Shen-Ong GL, Morse III HC, Potter M and Mushinski JF . (1986). [Published erratum appears in Mol. Cell Biol. 1986; 6: 2756]. Mol. Cell Biol., 6, 380ā€“392.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shen-Ong GL and Wolff L . (1987). J. Virol., 61, 3721ā€“3725.

  • Smith MR, Smith RE, Dunkel I, Hou V, Beemon KL and Hayward WS . (1997). J. Virol., 71, 6534ā€“6540.

  • Sudo T, Ota Y, Kotani S, Nakao M, Takami Y, Takeda S and Saya H . (2001). EMBO J., 20, 6499ā€“6508.

  • Thompson CB, Humphries EH, Carlson LM, Chen C-LH and Neiman PE . (1987). Cell, 51, 371ā€“381.

  • Tirunagaru VG, Sofer L, Cui J and Burnside J . (2000). Genomics, 66, 144ā€“151.

  • Wolff L, Mushinski JF, Shen-Ong GL and Morse III HC . (1988). J. Immunol., 141, 681ā€“689.

Download references

Acknowledgements

The authors thank Alanna Ruddell for helpful comments and Joan Burnside, Jean-Marie Buerstedde and the Resource Center of the German Genome Project for their cooperation in obtaining cDNA clones for the microarray and subsequent analyses. This work was supported by NIH grants RO1 CA20068 to PEN and RO1 CA48746 to KLB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E Neiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neiman, P., GrbiƧ, J., Polony, T. et al. Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-myb mutation in the bursa of Fabricius. Oncogene 22, 1073ā€“1086 (2003). https://doi.org/10.1038/sj.onc.1206070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206070

Keywords

This article is cited by

Search

Quick links