Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Thiol alkylation inhibits the mitogenic effects of platelet-derived growth factor and renders it proapoptotic via activation of STATs and p53 and induction of expression of caspase1 and p21waf1/cip1

Abstract

Thiols provide the major intracellular redox milieu and can undergo reversible oxidation and reduction. To understand the role of thiols in redox signaling events, we have studied the effect of N-ethylmaleimide, a specific thiol alkylating agent, on platelet-derived growth factor-BB (PDGF-BB)-induced mitogenesis in vascular smooth muscle cells (VSMC). Thiol alkylation inhibited PDGF-BB-induced expression of the Fos and Jun family proteins and AP-1 activity in VSMC. Thiol alkylation also inhibited PDGF-BB-induced expression of cyclin A and growth in these cells. In contrast, thiol alkylation enhanced and sustained the effect of PDGF-BB on the activation of the Jak STAT pathway, and this event was correlated with inhibition of protein tyrosine phosphatase lB activity. Thiol alkylation via inducing the expression of p21waf1/cip1 in a STAT1- and p53-dependent manner antagonized the downregulation of this cell cycle inhibitory molecule by PDGF-BB. The inhibition of AP-1 and activation of STATs, particularly STAT1, by thiol alkylation correlated with increased production of active caspase 1 and apoptosis in VSMC. Together, these findings suggest a role for thiols in mediating mitogenic and/or apoptotic signaling events in VSMC. These results also show that a sustained change in the intracellular thiol redox state can convert a mitogen into a death promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aghdasi B, Zhang JZ, Wu Y, Reid MB and Hamilton SL. (1997). J. Biol. Chem., 272, 3739–3748.

  • Ames BN, Shigenaga MK and Hagen TM. (1993). Proc. Natl. Acad. Sci. USA., 90, 7915–7922.

  • Aslund F, Berndt KD and Holmgren A. (1997). J. Biol. Chem., 272, 30780–30786.

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB and Rhee SG. (1997). J. Biol. Chem., 272, 217–221.

  • Chandel NS, Vander Heiden MG, Thompson CB and Schumacker PT. (2000). Oncogene, 19, 3840–3848.

  • Chen B, He L, Savell VH, Jenkins JJ and Parham DM. (2000). Cancer Res., 60, 3290–3298.

  • Chernoff J. (1999). J. Cell. Physiol., 180, 173–181.

  • Chernoff J, Schievella AR, Jost CA, Erikson RL and Neel BG. (1990). Proc. Natl. Acad. Sci. USA, 87, 2735–2739.

  • Chin YE, Kitagawa M, Kuida K, Flavell RA and Fu XY. (1997). Mol. Cell. Biol., 17, 5328–5337.

  • Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y and Fu XY. (1996). Science, 272, 719–722.

  • Clottes E and Burchell A. (1998). J. Biol. Chem., 273, 19391–19397.

  • Coffey RN, Watson RW, Hegarty NJ, O'Neill A, Gibbons N, Brady HR and Fitzpatrick JM (2000). Cancer, 88, 2092–2104.

  • Darnell Jr JE, Kerr IM and Stark GR. (1994). Science, 264, 1415–1421.

  • Denu JM and Dixon JE. (1998). Curr. Opin. Chem. Biol., 2, 633–641.

  • Dick LR, Moomaw CR, Pramanik BC, DeMartino GN and Slaughter CA. (1992). Biochemistry, 31, 7347–7355.

  • Dignam JD, Lebovitz RM and Roeder RG. (1983). Nucl. Acids Res., 11, 1475–1489.

  • Echarri A and Pendergast AM. (2001). Curr. Biol., 11, 1759–1765.

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B. (1993). Cell, 75, 817–825.

  • Ellman GL. (1959). Arch. Biochem. Biophys., 82, 70–77.

  • Ghosh SK, Gadiparthi L, Zeng ZZ, Bhanoori M, Tellez C, Bar-Eli M and Rao GN. (2002). J. Biol. Chem., 277, 21325–21331.

  • Gottlieb E, Vander Heiden MG and Thompson CB. (2000). Mol. Cell. Biol., 20, 5680–5689.

  • Guyton KZ, Liu Y, Gorospe M, Xu Q and Holbrook NJ. (1996). J. Biol. Chem., 271, 4138–4142.

  • Handel ML, Watts CK, DeFazio A, Day RO and Sutherland RL. (1995). Proc. Natl. Acad. Sci. USA, 92, 4497–4501.

  • Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, and Yodoi J. (2000). Biochem. Biophys. Res. Commun., 274, 177–182.

  • Horvath CM, Wen Z and Darnell JE Jr. (1995). Genes Dev., 9, 984–994.

  • Hoshi T and Heinemann S. (2001). J. Physiol., 15, 1–11.

  • Huang YQ, Li JJ and Karpatkin S. (2000). J. Biol. Chem., 275, 6462–6468.

  • Kang SW, Chae HZ, Seo MS, Kim K, Baines IC and Rhee SG. (1998). J. Biol. Chem., 273, 6297–6302.

  • Knebel A, Rahmsdorf HJ, Ullrich A and Herrlich P. (1996). EMBO J., 15, 5314–5325.

  • Krieger-Brauer HI and Kather H. (1992). J. Clin. Invest., 89, 1006–1013.

  • Kuge S, Arita M, Murayama A, Maeta K, Izawa S, Inoue Y and Nomoto A. (2001). Mol. Cell. Biol., 21, 6139–6150.

  • Kwaw I, Zen KC, Hu Y and Kaback HR. (2001). Biochemistry 40, 10491–10499.

  • Lee SR, Kwon KS, Kim SR and Rhee SG. (1998). J. Biol. Chem., 273, 15366–15372.

  • Lee SL, Simon AR, Wang WW and Fanburg BL. (2001). Am. J. Physiol., 281, L646–L652.

  • Levine AJ. (1997). Cell, 88, 323–331.

  • Li Y, Liu J and Zhan X. (2000). J. Biol. Chem., 275, 37187–37193.

  • Mahadev K, Zilbering A, Zhu L and Goldstein BJ. (2001). J. Biol. Chem., 276, 21938–21942.

  • Meier B, Radeke HH, Selle S, Younes M, Sies H, Resch K and Habermehl GG. (1989). Biochem. J., 263, 539–545.

  • Meister A and Anderson ME. (1983). Annu Rev. Biochem., 52, 711–760.

  • Meyer M, Schreck R and Baeuerle PA. (1993). EMBO J., 12, 2005–2015.

  • Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D and Tonks NK. (2001). J. Biol. Chem., 276, 47771–47774.

  • Preston TJ, Muller WJ and Singh G. (2001). J. Biol. Chem., 276, 9558–9564.

  • Qin S, Stadtman ER and Chock PB. (2000). Proc. Natl. Acad. Sci. USA, 97, 7118–7123.

  • Rao GN. (1996). Oncogene, 13, 713–719.

  • Rao GN, Alexander RW and Runge MS. (1995). J. Clin. Invest., 96, 842–847.

  • Rao GN and Berk BC. (1992). Circ. Res., 70, 593–599.

  • Rao GN, Glasgow WC, Eling TE and Runge MS. (1996). J. Biol. Chem., 271, 27760–27764.

  • Rao GN, Lassegue B, Griendling KK, Alexander RW and Berk BC. (1993a). Nucl. Acids Res., 21, 1259–1263.

  • Rao GN, Lassègue B, Griendling KK and Alexander RW. (1993b). Oncogene, 8, 2759–2764.

  • Rao GN, Katki KA, Madamanchi NR, Wu Y and Birrer MJ. (1999). J. Biol. Chem., 274, 6003–6010.

  • Schmidt KN, Amstad P, Cerutti P and Baeuerle PA. (1996). Adv. Exp. Med. Biol., 387, 63–68.

  • Schnelldorfer T, Gansauge S, Gansauge F, Schlosser S, Beger HG and Nussler AK. (2000). Cancer, 89, 1440–1447.

  • Schreck R, Rieber P and Baeuerle PA. (1991). EMBO J., 10, 2247–2252.

  • Sen CK and Packer L. (1996). FASEB J., 10, 709–720.

  • Shaulian E and Karin M. (2001). Oncogene, 20, 2390–2400.

  • Stadtman ER. (2001). Ann. N.Y. Acad. Sci., 928, 22–38.

  • Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA and Latchman DS. (2000). J. Biol. Chem., 275, 10002–10008.

  • Stewart EJ, Aslund F and Beckwith J. (1998). EMBO J., 17, 5543–5550.

  • Storz G, Tartaglia LA and Ames BN. (1990). Science, 248, 189–194.

  • Sun Y and Oberley LW. (1996). Free Rad. Biol. Med., 21, 335–348.

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K and Finkel T. (1995). Science, 270, 296–299.

  • Ungureanu D, Saharinen P, Junttila I, Hilton DJ and Silvennoinen O. (2002). Mol. Cell. Biol., 22, 3316–3326.

  • Verdier F, Walrafen P, Hubert N, Chretien S, Gisselbrecht S, Lacombe C and Mayeux P. (2000). J. Biol. Chem., 275, 18375–18381.

  • Wang D, Moriggl R, Stravopodis D, Carpino N, Marine JC, Teglund S, Feng J and Ihle JN. (2000). EMBO J., 19, 392–399.

  • Wei SJ, Botero A, Hirota K, Bradburg CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J and Gius D. (2000). Cancer Res., 60, 6688–6695.

  • Wu YY and Bradshaw RA. (2000). J. Biol. Chem., 275, 2147–2156.

  • Xanthoudakis S, Miao G, Wang F, Pan YC and Curran T. (1992). EMBO J., 11, 3323–3335.

  • Yellaturu CR, Bhanoori M, Neeli I and Rao GN. (2002). J. Biol. Chem., 277, 40148–40155.

  • Zheng M, Aslund F and Storz G. (1998). Science, 279, 1718–1721.

Download references

Acknowledgements

We are thankful to Drs Ralph A Bradshaw, Jonathan Chernoff, Michael Karin, Bert Vogelstein and Howard Young for providing us with pFSlDM, pJ3H-PTP435, pCOLL-CAT, pWWW-Luc, p53R175H and pSIE-CAT, respectively. This work was supported in part by a grant from the NIH (HL64165) to GNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadiparthi N Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhanoori, M., Yellaturu, C., Ghosh, S. et al. Thiol alkylation inhibits the mitogenic effects of platelet-derived growth factor and renders it proapoptotic via activation of STATs and p53 and induction of expression of caspase1 and p21waf1/cip1. Oncogene 22, 117–130 (2003). https://doi.org/10.1038/sj.onc.1206065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206065

Keywords

This article is cited by

Search

Quick links