Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of different Wnt/β-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors

Abstract

The Wnt/β-catenin signaling pathway controls cell fate and neoplastic transformation. Expression of an endogenous stabilized β-catenin (ΔE3 β-catenin) in mammary epithelium leads to the transdifferentiation into epidermis- and pilar-like structures. Signaling molecules in the canonical Wnt pathway upstream from β-catenin induce glandular tumors but it is not clear whether they also cause squamous transdifferentiation. To address this question we have now investigated mammary epithelium from transgenic mice that express activating molecules of the Wnt pathway: Wnt10b, Int2/Fgf3, CK2α, ΔE3 β-catenin, Cyclin D1, and dominant negative (dn) GSK3β. Cytokeratin 5 (CK5), which is expressed in both mammary myoepithelium and epidermis, and the epidermis-specific CK1 and CK6 were used as differentiation markers. Extensive squamous metaplasias and widespread expression of CK1 and CK6 were observed in ΔE3 β-catenin transgenic mammary tissue. Wnt10b and Int2 transgenes also induced squamous metaplasias, but expression of CK1 and CK6 was sporadic. While CK5 expression in Wnt10b transgenic tissue was still confined to the lining cell layer, its expression in Int2 transgenic tissue was completely disorganized. In contrast, cytokeratin expression in CK2α, dnGSK3β and Cyclin D1 transgenic mammary tissues was similar to that in ΔE3 β-catenin tissue. In support of transdifferentiation, expression of hard keratins specific for hair and nails was observed in pilar tumors. These results demonstrate that the activation of Wnt signaling components in mammary epithelium induces not only glandular tumors but also squamous differentiation, possibly by activating LEF-1, which is expressed in normal mammary epithelium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . 1997 EMBO J. 16: 3797–3804

  • Barker N, Huls G, Korinek V, Clevers H . 1999 Am. J. Pathol. 154: 29–35

  • Beavon IR . 2000 Eur. J. Cancer 36: 1607–1620

  • Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W . 1998 Science 280: 596–599

  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W . 1996 Nature 382: 638–642

  • Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R . 1996 Nature 382: 225–230

  • Cadigan KM, Nusse R . 1997 Genes Dev. 11: 3286–3305

  • Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale TC . 1996 EMBO J. 15: 4526–4536

  • Fuchs E, Byrne C . 1994 Curr. Opin. Genet. Dev. 4: 725–736

  • Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, Oshima M, Taketo MM . 2002 Cancer Res. 62: 1971–1977

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM . 1999 EMBO J. 18: 5931–5942

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW . 1998 Science 281: 1509–1512

  • Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W . 2001 Cell 105: 533–545

  • Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P . 2001 J. Cell Biol. 153: 555–568

  • Klint P, Claesson-Welsh L . 1999 Front Biosci. 4: D165–D177

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H . 1998 Nat. Genet. 19: 379–383

  • Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, Muller WJ, Lee FS, Leder P, Varmus HE . 1992 Mol. Cell. Biol. 12: 147–154

  • Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC . 2001 Oncogene 20: 3247–3257

  • Lane TF, Leder P . 1997 Oncogene 15: 2133–2144

  • Lee FS, Lane TF, Kuo A, Shackleford GM, Leder P . 1995 Proc. Natl. Acad. Sci. USA 92: 2268–2272

  • Lynch MH, O'Guin WM, Hardy C, Mak L, Sun TT . 1986 J. Cell Biol. 103: 2593–2606

  • Merrill BJ, Gat U, DasGupta R, Fuchs E . 2001 Genes Dev. 15: 1688–1705

  • Mester J, Wagenaar E, Sluyser M, Nusse R . 1987 J. Virol. 61: 1073–1078

  • Michaelson JS, Leder P . 2001 Oncogene 20: 5093–5099

  • Miller JR, Moon RT . 1996 Genes Dev. 10: 2527–2539

  • Miyoshi K, Shillingford JM, Le Provost F, Gounari F, Bronson R, von Boehmer H, Taketo MM, Cardiff RD, Hennighausen L, Khazaie K . 2002 Proc. Natl. Acad. Sci. USA 99: 219–224

  • Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . 1993 Proc. Natl. Acad. Sci. USA 90: 8977–8981

  • Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P . 1990 EMBO J. 9: 907–913

  • Niemann C, Owens DM, Huelsken J, Birchmeier W, Watt FM . 2002 Development 129: 95–109

  • Peters G, Lee AE, Dickson C . 1984 Nature 309: 273–275

  • Peters G, Lee AE, Dickson C . 1986 Nature 320: 628–631

  • Polakis P . 2000 Genes Dev. 14: 1837–1851

  • Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H . 1999 Science 285: 1923–1926

  • Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE, Cardiff RD . 2002 Am. J. Pathol. in press

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A . 1999 Proc. Natl. Acad. Sci. USA 96: 5522–5527

  • Song DH, Sussman DJ, Seldin DC . 2000 J. Biol. Chem. 275: 23790–23797

  • Stewart TA, Pattengale PK, Leder P . 1984 Cell 38: 627–637

  • Tekmal RR, Keshava N . 1997 Front Biosci. 2: D519–D526

  • Tetsu O, McCormick F . 1999 Nature 398: 422–426

  • Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . 1988 Cell 55: 619–625

  • van der Houven van Oordt CW, Smits R, Williamson SL, Luz A, Khan PM, Fodde R, van der Eb AJ, Breuer ML . 1997 Carcinogenesis 18: 2197–2203

  • Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E . 2001 Cell 104: 605–617

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . 1994 Nature 369: 669–671

  • Weiss RA, Eichner R, Sun TT . 1984 J. Cell Biol. 98: 1397–1406

  • Willert K, Brink M, Wodarz A, Varmus H, Nusse R . 1997 EMBO J. 16: 3089–3096

  • Wodarz A, Nusse R . 1998 Annu. Rev. Cell. Dev. Biol. 14: 59–88

Download references

Acknowledgements

We thank Philip Leder for tissue specimen and T-T Sun for the antibody AE13. Part of this work was supported by grants from the Ministry of Education, Science, Sports and Culture and from the Organization for Pharmaceutical Safety and Research, Japan (MM Taketo), by a grant from NIEHS P01 ES11624 (DC Seldin), by a grant from the German Academic Exchange Service (A Rosner) and by grants 5JB-0014 from the State of California Breast Cancer Research Program (RD Cardiff) and U42 RR14905 from the National Institutes of Health, National Centers for Research Resources (RD Cardiff). The authors wish to acknowledge the excellent technical support provided by Judy E Walls.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Hennighausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyoshi, K., Rosner, A., Nozawa, M. et al. Activation of different Wnt/β-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 21, 5548–5556 (2002). https://doi.org/10.1038/sj.onc.1205686

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205686

Keywords

This article is cited by

Search

Quick links