Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ubiquitination capabilities in response to neocarzinostatin and H2O2 stress in cell lines from patients with ataxia-telangiectasia

Abstract

The human genetic disorder ataxia-telangiectasia (A-T) is due to lack of functional ATM, a protein kinase which is involved in cellular responses to DNA double strand breaks (DSBs) and possibly other oxidative stresses, as well as in regulation of several fundamental cellular functions. Studies regarding responses in A-T cells to the induction of DSBs utilize ionizing radiation or radiomimetic chemicals, such as neocarzinostatin (NCS), which induce DNA DSBs. This critical DNA lesion activates many defense systems, such as the cell cycle checkpoints. The cell cycle is also regulated through a timed and coordinated degradation of regulatory proteins via the ubiquitin pathway. Our recent studies indicate that the ubiquitin pathway is influenced by the cellular redox status and that it is the major cellular pathway for removal of oxidized proteins. Accordingly, we hypothesized that the absence of a functional ATM protein might involve perturbations to the ubiquitin pathway as well. We show here that upon treatment with NCS, there was a transient 50–70% increase in endogenous ubiquitin conjugates in A-T and wt lymphoblastoid cells. Ubiquitin conjugation capabilities per se and levels of substrates for conjugation were also similarly enhanced in wt and A-T cells upon NCS treatment. We also compared the ubiquitination response in A-T and wt cells using H2O2 as the stress, in view of preexisting evidence of the effects of H2O2 on ubiquitination capabilities in other types of cells. As with NCS treatment, there was an ≈45% increase in endogenous ubiquitin conjugates by 2–4 h after exposure to H2O2. Both cell types showed a rapid 50–150% increase in de novo formed125I-ubiquitin conjugates. As compared with wt cells, unexposed A-T cells had higher endogenous levels of conjugates and enhanced conjugation capability. However, A-T cells mounted a more muted ubiquitination response to the stress. The enhanced ubiquitin conjugation in unstressed A-T cells and attenuated ability of these cells to respond to stress are consistent with the A-T cells being under oxidative stress and with their having an ‘aged’ phenotype. The indication that ubiquitin conjugate levels and ubiquitin conjugation capabilities are enhanced upon oxidative stress without significant changes in GSSG/GSH ratios indicates that assays of ubiquitination provide a sensitive measure of cellular stress. The data also add support to the impression that potentiated ubiquitination response to mild oxidative stress is a generalizable phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adamo AM, Pasquini LA, Moreno MB, Oteiza PI, Soto EF, Pasquini JM . 1999 J. Neurosci. Res. 55: 523–531

  • Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G . 2001 J. Biol. Chem. 276: 38224–38230

  • Applegate LA, Frenk E, Gibbs N, Johnson B, Ferguson J, Tyrrell RM . 1994 J. Invest. Dermatol. 102: 762–767

  • Barlow C, Dennery PA, Shigenaga MK, Smith MA, Morrow JD, Roberts II LJ, Wynshaw-Boris A, Levine RL . 1999 Proc. Natl. Acad. Sci. USA 96: 9915–9919

  • Bence NF, Sampat RM, Kopito RR . 2001 Science 292: 1552–1555

  • Ciechanover A . 1994 Cell 79: 13–21

  • Ciechanover A, Wolin SL, Steitz JA, Lodish HF . 1985 Proc. Natl. Acad. Sci. USA 82: 1341–1345

  • Cuervo AM, Dice JF . 2000 J. Biol. Chem. 275: 31505–31513

  • Edo K, Saito K, Matsuda Y, Akiyama-Murai Y, Mizugaki M, Koide Y, Ishida N . 1991 Chem. Pharm. Bull. (Tokyo) 39: 170–176

  • Eisenhauer DA, Berger JJ, Peltier CZ, Taylor A . 1988 Exp. Eye Res. 46: 579–590

  • Gatei M, Shkedy D, Khanna KK, Uziel T, Shiloh Y, Pandita TK, Lavin MF, Rotman G . 2001 Oncogene 20: 289–294

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM . 2000 Science 290: 985–989

  • Haas AL . 1997 FASEB J. 11: 1053

  • Haas AL, Siepmann TJ . 1997a FASEB J. 11: 1053–1054

  • Haas AL, Siepmann TJ . 1997b FASEB J. 11: 1257–1268

  • Hauser HP, Bardroff M, Pyrowolakis G, Jentsch S . 1998 J. Cell Biol. 141: 1415–1422

  • Hershko A, Ciechanover A . 1998 Annu. Rev. Biochem. 67: 425–479

  • Hershko A, Heller H, Eytan E, Reiss Y . 1986 J. Biol. Chem. 261: 11992–11999

  • Hochstrasser M . 1996 Annu. Rev. Genet. 30: 405–439

  • Huang LL, Shang F, Nowell Jr TR, Taylor A . 1995 Exp. Eye Res. 61: 45–54

  • Jabben M, Shanklin J, Vierstra RD . 1989 Plant Physiol. 90: 380–384

  • Jahngen JH, Haas AL, Ciechanover A, Blondin J, Eisenhauer D, Taylor A . 1986 J. Biol. Chem. 261: 13760–13767

  • Jahngen-Hodge J, Cyr D, Laxman E, Taylor A . 1992 Exp. Eye Res. 55: 897–902

  • Jahngen-Hodge J, Obin M, Gong X, Shang F, Nowell T, Gong J, Abasi H, Blumberg J, Taylor A . 1997 J. Biol. Chem. 272: 28218–28226

  • Jentsch S . 1992 Annu. Rev. Genet. 26: 179–207

  • Jentsch S, Schlenker S . 1995 Cell 82: 881–884

  • Johnston JA, Ward CL, Kopito RR . 1998 J. Cell Biol. 143: 1883–1898

  • Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A . 2001 Cancer Res. 61: 1849–1854

  • King RW, Deshaies RJ, Peters J-M, Kirschner MW . 1996 Science 274: 1652–1658

  • Kornitzer D, Ciechanover A . 2000 J. Cell. Physiol. 182: 1–11

  • Lenton KJ, Therriault H, Cantin AM, Fulop T, Payette H, Wagner JR . 2000 Am. J. Clin. Nutr. 71: 1194–1200

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L . 2000 Science 287: 1265–1269

  • Mayer RJ, Lowe J, Landon M . 1991 J. Pathol. 163: 279–281

  • Muller-Taubenberger A, Hagmann J, Noegel A, Gerisch G . 1988 J. Cell Sci. 90: 51–58

  • Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A . 1998 FASEB J. 12: 561–569

  • Obin M, Mesco E, Gong X, Haas A, Joseph J, Taylor A . 1999 J. Biol. Chem. 274: 11789–11795

  • Okada S . 2000 J. Gastroenterol. 35: 407–409

  • Ramanathan M, Hassanain M, Levitt M, Seth A, Tolman JS, Fried VA, Ingoglia NA . 1999 Neuroreport 10: 3797–3802

  • Rotman G, Shiloh Y . 1997 Cancer Surveys 29: 285–304

  • Rotman G, Shiloh Y . 1999 Oncogene 18: 6135–6144

  • Rybczynska M, Pawlak AL, Sikorska E, Ignatowicz R . 1996 Biochim. Biophys. Acta. 1302: 231–235

  • Scheffner M, Nuber U, Huibregtse JM . 1995 Nature 373: 81–83

  • Schor NF, Tyurina YY, Fabisiak JP, Tyurin VA, Lazo JS, Kagan VE . 1999 Brain Res. 831: 125–130

  • Shackelford RE, Innes CL, Sieber SO, Heinloth AN, Leadon SA, Paules RS . 2001 J. Biol. Chem. 276: 21951–21959

  • Shang F, Gong X, Palmer HJ, Nowell Jr TR, Taylor A . 1997a Exp. Eye Res. 64: 21–30

  • Shang F, Gong X, Taylor A . 1997b J. Biol. Chem. 272: 23086–23093

  • Shang F, Nowell Jr TR, Taylor A . 2001 Exp. Eye Res. 73: 229–238

  • Shang F, Taylor A . 1995 Biochem. J. 307: 297–303

  • Shiloh Y, Becker Y . 1982 Biochim. Biophys. Acta. 721: 485–488

  • Shiloh Y, Kastan X . 2001 Adv. Cancer Res. 83: 209–254

  • Smith D, Shang F, Nowell TR, Asmundsson G, Perrone G, Dallal G, Scott L, Kelliher M, Gindelsky B, Taylor A . 1999 J. Nutr. 129: 1229–1232

  • Stadtman ER . 1992 Science 257: 1220–1224

  • Stephen AG, Trausch-Azar JS, Ciechanover A, Schwartz AL . 1996 J. Biol. Chem. 271: 15608–15614

  • Takao N, Li Y, Yamamoto K . 2000 FEBS Lett. 472: 133–136

  • Tanaka T, Nakamura H, Nishiyama A, Hosoi F, Masutani H, Wada H, Yodoi J . 2000 Free Radic. Res. 33: 851–855

  • Taylor A . 1999 Nutritional and Environmental Influences on the Eye. Taylor A (ed) Boca Raton, FL: CRC Press pp 53–93

    Google Scholar 

  • Taylor A, Berger J, Reddan J, Zuliani A . 1991 In Vitro Cell. Develop. Biol. 27A: 287–292

  • Taylor A, Davies KJA . 1987 Free Radic. Biol. Med. 3: 371–377

  • Taylor A, Lipman RD, Jahngen-Hodge J, Palmer V, Smith D, Padhye N, Dallal GE, Cyr DE, Laxman E, Shepard D, Morrow F, Salomon R, Perrone G, Asmundsson M, Blumberg T, Mune M, Harrison DE, Archer JR, Shigenaga M . 1995 Mech. Ageing Dev. 79: 33–57

  • Varshavsky A . 1997 TIBS 22: 383–387

  • Watters D, Kedar P, Spring K, Bjorkman J, Chen P, Gatei M, Birrell G, Garrone B, Srinivasa P, Crane DI, Lavin MF . 1999 J. Biol. Chem. 274: 34277–34282

Download references

Acknowledgements

We thank Dr Luciana Chessa for A-T cell lines. This work was supported by NIH EY013250, USDA contract 5000-052, and Fulbright Foundation CIES (to A Taylor), and research grants from The A-T Medical Research Foundation and the A-T Children's Project (to Y Shiloh). Y Galanty is a Thomas Appeal Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, A., Shang, F., Nowell, T. et al. Ubiquitination capabilities in response to neocarzinostatin and H2O2 stress in cell lines from patients with ataxia-telangiectasia. Oncogene 21, 4363–4373 (2002). https://doi.org/10.1038/sj.onc.1205557

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205557

Keywords

This article is cited by

Search

Quick links