Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway

Abstract

Telomerase is a regulated enzyme and its activity is tightly associated with cell proliferation. The mechanisms of this association are unclear, but specific growth factors may regulate telomerase activity. The present study examines the effect of epidermal growth factor (EGF) on telomerase activity and identifies the signal transduction pathway involved in this process. EGF up-regulated telomerase activity in EGF receptor-positive cells after the activation of telomerase reverse transcriptase (TERT) mRNA expression. This activation was rapid, peaked after 6 or 12 h and was not blocked by the concurrent exposure to cycloheximide, suggesting a direct effect of EGF on TERT transcription. Transient expression assays revealed that EGF activates the hTERT promoter and that the proximal core promoter is responsible for this regulation. The activation of hTERT mRNA expression by EGF was specifically blocked by MEK inhibitor, and in vitro kinase assays demonstrated that ERK is activated in response to EGF. Transient expression assays using mutant reporter plasmids revealed that an ETS motif located in the core promoter of hTERT is required for the EGF-induced transactivation of hTERT. Overexpression of wild type Ets in cells enhanced the EGF effect on hTERT transcription, while that of dominant negative Ets significantly repressed EGF action. These findings suggest that EGF activates telomerase through the direct activation of TERT transcription, in which the Ras/MEK/ERK pathway and Ets factor play major roles. Our data support the notion that growth factors directly regulate telomerase via specific signal transduction pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alvarez E, Northwood IC, Gonzales FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ . 1991 J. Biol. Chem. 266: 15277–15285

  • Aperlo C, Pognonec P, Stanley ER, Boulukos KE . 1996 Mol. Cell. Biol. 16: 6851–6858

  • Babu GL, Lalli MJ, Sussman MA, Sadodhima J, Periasamy M . 2000 J. Mol. Cee. Cardiol. 32: 1447–1457

  • Baselga J, Averbuch SD . 2000 Drug 60: 33–40

  • Bonnet F, Vigneron M, Bensaude O, Duvois MF . 1999 Nucleic Acids Res. 27: 4399–4404

  • Bornar AG, Ouellette M, Frolkis M, Holt SE, Chiu C, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE . 1998 Science 279: 349–352

  • Bosc DG, Coueli BS, Janknecht R . 2001 Oncogene 43: 6215–6224

  • Carpenter G . 1992 FASEB J. 6: 3283–3289

  • Chen BK, Chang WC . 2000 Proc. Natl. Acad. Sci. USA 97: 10406–10411

  • Dubois MF, Nguyen VT, Dahmus ME, Pages G, Pouyssegur J, Bensaude O . 1994 EMBO J. 13: 4787–4797

  • Fan Z, Lu Y, Wu X, DeBlasio A, Koff A, Mendelsohn J . 1995 J. Cell Biol. 131: 235–242

  • Greider CW . 1996 Ann. Rev. Biochem. 65: 337–365

  • Gupta S, Seth A, Davis RJ . 1993 Proc. Natl. Acad. Sci. USA 90: 3216–3220

  • Haik S, Gauthier LR, Granotier C, Peyrin JM, Jages CS, Dormont D, Boussin FD . 2000 Oncogene 19: 2957–2966

  • Hill CS, Treisman R . 1995 Cell 80: 199–211

  • Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M . 1995 J. Immunol. 155: 3711–3715

  • Holt SE, Wright WE, Shay JW . 1996 Mol. Cell. Biol. 16: 2932–2939

  • Holt SE, Aisner DL, Shay JW, Wright WE . 1997 Proc. Natl. Acad. Sci. USA 94: 10687–10692

  • Kyo S, Takakura M, Kohama T, Inoue M . 1997 Cancer Res. 57: 610–614

  • Kyo S, Kanaya T, Takakura M, Tanaka M, Inoue M . 1999 Int. J. Cancer 80: 60–63

  • Kyo S, Takakura M, Taira T, Kanaya T, Ito H, Yutsudo M, Ariga H, Inoue M . 2000 Nucleic Acids Res. 28: 669–677

  • Martin-Rivera L, Herrera E, Albar JP, Blasco MA . 1998 Proc. Natl. Acad. Sci. USA 95: 10471–10476

  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA, Weinberg RA . 1997 Cell 90: 785–795

  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR . 1997 Science 277: 955–959

  • Sementchenko VI, Watson DK . 2000 Oncogene 19: 6533–6548

  • Seth A, Gonzalez FA, Gupta S, Raden DL, Davis RJ . 1992 J. Biol. Chem. 267: 24798–24804

  • Takakura M, Kyo S, Kanaya T, Tanaka M, Inoue M . 1998 Cancer Res. 58: 1558–1561

  • Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M, Inoue M . 1999 Cancer Res. 59: 551–557

  • Tsumiki H, Hasunuma T, Kobata T, Kato T, Uchida A, Nishioka K . 2000 Rheumatol. Int. 19: 123–128

  • Tu W, Zhang DK, Cheung PT, Tsao SW, Lau YL . 1999 Br. J. Haematol. 104: 785–794

  • Ullrich A, Schlessinger J . 1990 Cell 61: 203–212

  • Van der Geer P, Hunter T, Lindberg RA . 1994 Ann. Rev. Cell Biol. 10: 251–337

  • Wang Z, Kyo S, Takakura M, Tanaka M, Yatabe N, Maida Y, Fujiwara M, Hayakawa J, Ohmichi M, Koike K, Inoue M . 2000 Cancer Res. 60: 5376–5381

  • Wasylyk B, Wasylyk C, Flores P, Begue A, Leprince D, Stehelin D . 1990 Nature 346: 191–193

  • Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB . 1997 Nature Genet. 17: 498–502

  • Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Linger J, Dalla-Favera R . 1999 Nature Genet. 21: 220–224

  • Yamazaki H, Ohba Y, Tamaoki N, Shibuya M . 1990 Jpn. J. Cancer Res. 81: 773–779

  • Yang XY, Kimura M, Jeanclos E, Aviv A . 2000 Life Sci. 66: 1545–1555

Download references

Acknowledgements

We thank Professor Wen-Chang Chang, National Cheng Kung University, Taiwan, for providing A-431 cells and Dr KE Boulukos, Universite de Nice, Faculte des Sciences, Nice, France for providing wild-type Ets and dominant-negative Ets expression vectors. We also thank Dr Koji Hisamoto for excellent technical support (Osaka University, Suita, Japan). This study was supported in part by a Grant-in Aid for the Second Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maida, Y., Kyo, S., Kanaya, T. et al. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 21, 4071–4079 (2002). https://doi.org/10.1038/sj.onc.1205509

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205509

Keywords

This article is cited by

Search

Quick links