Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1

Abstract

RASSF1A, one of the two major isoforms of the putative tumor suppressor gene RASSF1, located at 3p21.3, is inactivated in a variety of human cancers including lung, breast, bladder and renal cell carcinomas. We have isolated and cloned two human homologues of this gene, RASSF3 and NORE1, located at 12q14.1 and 1q32.1, respectively. Both RASSF3 and NORE1 share almost 60% homology, at the amino acid level, with RASSF1. The RASSF3 gene contains five exons and encodes a 247 amino acid protein (MW of 28.6 kDa) with a highly conserved Ras association (RalGDS/AF-6) (RA) domain at the C-terminus. RASSF3 is ubiquitously expressed in all normal tissues and cancer cell lines analysed. NORE1, which is homologous to the previously described mouse Nore1 gene, exists in at least two spliced isoforms, A and B. Transcript A encodes a protein of 418 amino acids (MW or 47 kDa) while transcript B contains an ORF of 265 aa (MW of 30.5 kDa). Both share a RA domain, encoded by exons 3 through 6. NORE1A and NORE1B are expressed in most of the normal tissues analysed but they appear to be down-regulated in several cancer cell lines. However, contrary to RASSF1A, gene silencing by methylation of the CpG islands at which the two NORE1 transcripts initiate is not a common event in human primary tumors. RASSF3 and NORE1B are very similar, at the N-terminus, to the splice variant C of RASSF1 (RASSF1C), which does not seem to be involved in tumorigenesis. NORE1A is most closely related to RASSF1A, for sequence homology and genomic organization. However, aberrations in tumors have so far not been found. The presence of a Ras association domain common to NORE1, RASSF1, and RASSF3 suggests their possible involvement in Ras-like signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adjei AA . 2001 J. Natl. Cancer Inst. 93: 1062–1074

  • Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J, Fullwood P, Chauhan A, Walker R, Shaw JA, Hosoe S, Lerman MI, Minna JD, Maher ER, Latif F . 2001 Oncogene 20: 1509–1518

  • Almeida A, Zhu XX, Vogt N, Tyagi R, Muleris M, Dutrillaux AM, Dutrillaux B, Ross D, Malfoy B, Hanash S . 1998 Oncogene 16: 2997–3002

  • Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF . 2001 Recent Prog. Horm. Res. 56: 127–155

  • Bar-Sagi D . 2001 Mol. Cell. Biol. 21: 1441–1443

  • Bar-Sagi D, Hall A . 2000 Cell 103: 227–238

  • Baylin SB, Herman JG . 2000 Trends Genet. 16: 168–174

  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP . 1998 Adv. Cancer Res. 72: 141–196

  • Bos JL . 1989 Cancer Res. 49: 4682–4689

  • Bos JL . 1998 EMBO J. 17: 6776–6782

  • Burbee DG, Forgacs E, Zöcgbayer-Müller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD . 2001 J. Natl. Cancer Inst. 93: 691–699

  • Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ . 1998 Oncogene 17: 1395–1413

  • Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers-Graham K, Fu H, Der CJ, Campbell SL . 1997 J. Biol. Chem. 272: 20990–20993

  • Crespo P, Leon J . 2000 Cell. Mol. Life Sci. 57: 1613–1636

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP . 2000 Nat. Genet. 25: 315–319

  • Dammann R, Takahashi T, Pfeifer GP . 2001a Oncogene 20: 3563–3567

  • Dammann R, Yang G, Pfeifer GP . 2001b Cancer Res. 61: 3105–3109

  • Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D, Zbar B, Lerman MI, Stanbridge EJ, Minna JD, Protopopov A, Li J, Kashuba V, Klein G, Zabarovsky ER . 2001 Proc. Natl. Acad. Sci. USA 98: 7504–7509

  • Jones PA, Laird PW . 1999 Nature Genet. 21: 163–167

  • Katz ME, McCormick F . 1997 Curr. Opin. Genet. Dev. 7: 75–79

  • Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang X-F, Seed B, Avruch J . 2002 Curr. Biol. in press

  • Kros JM, van Run PR, Alers JC, Beverloo HB, van den Bent MJ, Avezaat CJ, van Dekken H . 1999 J. Pathol. 188: 282–288

  • Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH, Kim JI, Chang SG, Chi SG . 2001 Cancer Res. 61: 6688–6692

  • Lo K-W, Kwong J, Hui AB-Y, Chan SY-Y, To K-F, Chan AS-C, Chow LS-N, Teo PML, Johnson PJ, Huang DP . 2001 Cancer Res. 61: 3877–3881

  • Marshall CJ . 1996 Curr. Opin. Cell Biol. 8: 197–204

  • Newton AC . 1995 Curr. Biol. 5: 973–976

  • Ortiz-Vega S, Khokhlatchev A, Nedwidek M, Zhang X-F, Dammann R, Pfeifer GP, Avruch J . 2002 Oncogene in press

  • Petersen C, Orem N, Trueheart J, Thorner JW, Macara IG . 2000 J. Biol. Chem. 275: 4081–4091

  • Ponting CP, Benjamin DR . 1996 Trends Biochem. Sci. 21: 422–425

  • Reddy EP, Reynolds RK, Santos E, Barbacid M . 1982 Nature 300: 149–152

  • Ried T, Just KE, Holtgreve-Grez H, du Manoir S, Speicher MR, Schrock E, Latham C, Blegen H, Zetterberg A, Cremer T, Auer G . 1995 Cancer Res. 55: 5415–5423

  • Sekido Y, Ahmadian M, Wistuba II, Latif F, Bader S, Wei MH, Duh FM, Gazdar AF, Lerman MI, Minna JD . 1998 Oncogene 16: 3151–3157

  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . 2000 Trends Cell Biol. 10: 147–154

  • Thompson JD, Higgins DG, Gibson TJ . 1994 Nucl. Acids Res. 22: 4673–4680

  • Vavvas D, Li X, Avruch J, Zhang X-F . 1998 J. Biol. Chem. 273: 5439–5442

  • Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ . 2000 J. Biol. Chem. 275: 35669–35672

  • Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JW, Garner HR, McKay B, Latif F, Lerman MI, Lam S, Gazdar AF, Minna JD . 2000 Cancer Res. 60: 1949–1960

  • Wittinghofer A, Herrmann C . 1995 FEBS Lett. 369: 52–56

  • Wittinghofer A, Nassar N . 1996 Trends Biochem. Sci. 21: 488–491

  • Xiong Z, Laird PW . 1997 Nucl. Acids Res. 25: 2532–2534

  • Yoon J-H, Dammann R, Pfeifer GP . 2001 Int. J. Cancer 94: 212–217

Download references

Acknowledgements

We thank Steve Bates for tissue culture work. We thank Dr Lynette Grouse and Dr Narayan Bhat of NCI for provision of the human melanoma cell line and the mRNA used for the preparation of cDNA library NIH-MGC-20. This study was supported by a grant from the University of California Tobacco Related Disease Research Program (10-RT-0016) and by NIH grant CA88873 to GP Pfeifer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Tommasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommasi, S., Dammann, R., Jin, SG. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713–2720 (2002). https://doi.org/10.1038/sj.onc.1205365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205365

Keywords

This article is cited by

Search

Quick links