Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Astrocyte-specific expression of CDK4 is not sufficient for tumor formation, but cooperates with p53 heterozygosity to provide a growth advantage for astrocytes in vivo

Abstract

The development of malignant gliomas (astrocytomas) involves the accumulation of multiple genetic changes, including mutations in the p53 and retinoblastoma (Rb) cell cycle regulatory pathways. One Rb pathway alteration seen in high-grade astrocytomas is amplification of cyclin dependent kinase-4 (CDK4). To define the function of CDK4 amplification/overexpression in astrocytoma pathogenesis, we generated three transgenic mouse lines that overexpress human CDK4 (hCDK4) in astrocytes using the human glial fibrillary acidic protein (GFAP) promoter. GFAP-hCDK4 mice do not develop brain tumors, but exhibit a small increase in astrocyte number. Cultured astrocytes from these mice do not demonstrate a cell-autonomous growth advantage in vitro and lack properties of transformed cells. To determine whether cdk4 overexpression provides a cooperative growth advantage in vitro, CDK4-overexpressing C6 glioma cell lines were generated and found to exhibit increased cell growth. In addition, GFAP-hCDK4; p53+/− as well as p53+/−; Rb+/− mice exhibited increased numbers of astrocytes compared to GFAP-hCDK4, p53+/−, or Rb+/− mice in vivo. No cooperative effect was observed with GFAP-hCDK4; Rb+/− mice. These results support the hypothesis that cdk4 overexpression alone is not sufficient for astrocytoma formation, but can provide a cooperative growth advantage in concert with genetic alterations in the p53 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bajenaru ML, Donahoe J, Corral T, Reilly KM, Brophy S, Pellicer A, Gutmann DH . 2001 GLIA 33: 314–323

  • Bischoff FZ, Yim SO, Pathak S, Grant G, Siciliano MJ, Giovanella BC, Strong LC, Tainsky MA . 1990 Cancer Res. 50: 7979–7984

  • Bogler O, Huang H-JS, Cavenee WK . 1995 Cancer Res. 55: 2746–2751

  • Bogler O, Nagane M, Gillis J, Huang HJS, Cavanee WK . 1999 Cell Growth Differ. 10: 73–86

  • Bowman T, Symonds H, Gu L, Yin C, Oren M, Van Dyke T . 1996 Genes Dev. 10: 826–835

  • Brenner M, Kisseberth WC, Su Y, Bernard F, Messing A . 1994 J. Neurosci. 3: 1030–1037

  • Ding H, Lau N, Roncai L, Wu X, Shannon P, Nagy A, Guha A, Gutmann D . 2000 Neuro-Oncology 2: 259–

  • Ding H, Roncari L, Shannon P, MacMaster S, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A . 2001 Cancer Res. 61: 3826–3836

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS, Bradley A . 1992 Nature 356: 215–221

  • Ekstrand AJ, Sugawa N, James CD, Collins VP . 1992 Proc. Natl. Acad. Sci. USA 89: 4309–4313

  • Franklin K, Paxinos G . 1997 The mouse brain in stereotaxic coordinates New York: Academic Press

    Google Scholar 

  • Guha A, Feldkamp MM, Lau N, Boss G, Pawson A . 1997 Oncogene 15: 2755–2765

  • Gutmann DH, Donahoe J, Brown T, James CD, Perry A . 2000 J. Neuropath. Exp. Neurol. 26: 361–367

  • Gutmann DH, Loehr A, Zhang Y, Kim J, Henkemeyer M, Cashen A . 1999 Oncogene 18: 4450–4459

  • Hegi ME, Klein MA, Ruedi D, Chene P, Hamou MF, Aguzzi A . 2000 Cancer Res. 60: 3019–3024

  • Hewett SJ, Corbett JA, McDaniel ML, Choi DW . 1993 Brain Res. 625: 337–341

  • Holland EC, Hively WP, Gallo V, Varmus HE . 1998 Genes Dev. 12: 3644–3649

  • Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP . 2000 Cancer Res. 60: 417–424

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . 1992 Nature 359: 295–300

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA . 1994 Nature Genet. 7: 353–361

  • Kleihues P, Cavanee WK . 2000 World Health Organization Classification of Tumours: Tumours of the Nervous System Lyon: IARC Press

    Google Scholar 

  • Lau N, Feldkamp MM, Roncari L, Loehr AH, Shannon P, Gutmann DH, Guha A . 2000 J. Neuropath Exp. Neurol. 59: 759–767

  • Li FP, Fraumeni Jr JF . 1969 J. Natl. Cancer Inst. 43: 1365–1373

  • Listernick R, Charrow J, Gutmann DH . 1999 Am. J. Med. Genet. 89: 38–44

  • Marino S, Vooijs M, van der Gulden H, Jonkers J, Berns A . 2000 Genes Dev. 14: 994–1004

  • Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP . 1996 Cancer Res. 56: 5141–5145

  • Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP . 1994 Cancer Res. 54: 4299–4303

  • Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T . 2000 Nature Genet. 26: 109–113

  • Rollbrocker B, Waha A, Louis DN, Wiestler OD, von Deimling A . 1996 Acta. Neuropathol (Berl) 92: 70–74

  • Rose K, Goldberg MP, Choi DW . 1993 In Vitro Biological Systems. Tyson CA and Frazier JM (eds) New York: Academic Press pp 46–60

    Book  Google Scholar 

  • Schlegel J, Piontek G, Kersting M, Schuermann M, Kappler R, Scherthan H, Weghorst C, Buzard G, Mennel H . 1999 Pathobiology 67: 202–206

  • Scotto C, Deloulme JC, Rousseau D, Chambaz E, Baudier J . 1998 Mol. and Cell. Biol. 18: 4272–4281

  • Serrano M, Le H-W, Chin L, Cardon-Cardo C, Beach D, DePinho RA . 1996 Cell 85: 27–37

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T . 1994 Cell 78: 703–711

  • Timiryasova TM, Chen B, Haghighat P, Fodor I . 1999 Int. J. Oncol. 14: 845–854

  • Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN . 1996 Cancer Res. 56: 150–153

  • Wakabayashi T, Messing A, Brenner M . 1999 Biotechniques 26: 302–307

  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B . 1987 Proc. Natl. Acad. Sci. USA 84: 6899–6903

  • Yahanda AM, Bruner JM, Donehower LA, Morrison RS . 1995 Mol. Cell. Biol. 15: 4249–4259

  • Yin D, Kondo S, Barnett GH, Morimura T, Takeuchi J . 1995 Neurosurgery 37: 758–763

  • Zhou L, Sun B, Zhang CL, Fine A, Chiu SY, Messing A . 1997 Dev. Biol. 187: 36–42

Download references

Acknowledgements

We gratefully appreciate the advice of Dr M Livia Bajenaru and the technical assistance of Ms Wen Li in our laboratory as well as Mia Nichols in The Washington University Neuroscience Transgenic Core. This work was supported by funding from The National Institutes of Health (NS41097 to DH Gutmann) and The American Cancer Society (RPG-00-231-01-CNE to DH Gutmann).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H Gutmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Zy., Baldwin, R., Hedrick, N. et al. Astrocyte-specific expression of CDK4 is not sufficient for tumor formation, but cooperates with p53 heterozygosity to provide a growth advantage for astrocytes in vivo. Oncogene 21, 1325–1334 (2002). https://doi.org/10.1038/sj.onc.1205206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205206

Keywords

This article is cited by

Search

Quick links