Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Werner and Bloom helicases are involved in DNA repair in a complementary fashion

Abstract

Werner syndrome (WS) is a recessive disorder characterized by premature senescence. Bloom syndrome (BS) is a recessive disorder characterized by short stature and immunodeficiency. A common characteristic of both syndromes is genomic instability leading to tumorigenesis. WRN and BLM genes causing WS and BS, encode proteins that are closely related to the RecQ helicase. We produced WRN−/−, BLM−/− and WRN−/−/BLM−/− mutants in the chicken B-cell line DT40. WRN−/− cells showed hypersensitivities to genotoxic agents, such as 4-nitroquinoline 1-oxide, camptothecin and methyl methanesulfonate. They also showed a threefold increase in targeted integration rate of exogenous DNAs, but not in sister chromatid exchange (SCE) frequency. BLM−/− cells showed hypersensitivities to the genotoxic agents as well as ultraviolet (UV) light, in addition to a 10-fold increase in targeted integration rate and an 11-fold increase in SCE frequency. In WRN−/−/BLM−/− cells, synergistically increased hypersensitivities to the genotoxic agents were observed whereas both SCE frequencies and targeted integration rates were partially diminished compared to the single mutants. Chromosomal aberrations were also synergistically increased in WRN−/−/BLM−/− cells when irradiated with UV light in late S to G2 phases. These results suggest that both WRN and BLM may be involved in DNA repair in a complementary fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bezzubova O, Silbergleit A, Yamaguchi-Iwai Y, Takeda S, Buerstedde JM . 1997 Cell 89: 185–193

  • Brosh RM, Majumdar A, Desai S, Hickson ID, Bohr VA, Seidman MM . 2001 J. Biol. Chem. 276: 3024–3030

  • Brosh Jr RM, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, Bohr VA . 1999 J. Biol. Chem. 274: 18341–18350

  • Buerstedde JM, Reynaud CA, Humphries EH, Olson W, Ewert DL, Weill JC . 1990 EMBO J. 9: 921–927

  • Chaganti RSK, Schonberg S, German J . 1974 Proc. Natl. Acad. Sci. USA 71: 4508–4512

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC . 2000 EMBO Reports 1: 80–84

  • Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA . 2000 Genes Dev. 14: 907–912

  • Elli R, Chessa L, Antonelli A, Petrinelli P, Ambra R, Marcucci L . 1996 Cancer Genet. Cytogenet. 87: 112–116

  • Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J . 1995 Cell 83: 655–666

  • Epstein CJ, Martin GM, Schultz AL, Motulsky AG . 1966 Medicine (Baltimore) 45: 177–221

  • Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S . 1993 Proc. Natl. Acad. Sci. USA. 90: 12030–12034

  • Fujiwara Y, Higashikawa T, Tatsumi M . 1977 J. Cell Physiol. 92: 365–374

  • Fukagawa T, Hayward N, Yang J, Azzalin C, Griffin D, Stewart AF, Brown W . 1999 Nucleic Acids Res. 27: 1966–1969

  • Fukuchi K, Martin GM, Monnat Jr RJ . 1989 Proc. Natl. Acad. Sci. USA. 86: 5893–5897

  • Galiegue-Zouitina S, Bailleul B, Loucheux-Lefebvre MH . 1984 Anal. Biochem. 138: 454–457

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R . 1994 Mol. Cell. Biol. 14: 8391–8398

  • Gebhart E, Bauer R, Raub U, Schinzel M, Ruprech KW, Jonas JB . 1988 Hum. Genet. 80: 135–139

  • German J . 1993 Medicine (Baltimore) 72: 393–406

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA . 1997 Nat. Genet. 17: 100–103

  • Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H . 1997 Proc. Natl. Acad. Sci. USA 94: 3860–3865

  • Heartlein MW, Tsuji H, Latt SA . 1987 Exp. Cell Res. 169: 245–254

  • Higashikawa T, Fujiwara Y . 1978 Exp. Cell Res. 113: 438–442

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J . 1998 Nat. Genet. 20: 114–116

  • Imamura O, Fujita K, Shimamoto A, Tanabe H, Takeda S, Furuichi Y, Matsumoto T . 2001 Oncogene 20: 1143–1151

  • Kadyk LC, Hartwell LH . 1993 Genetics 133: 469–487

  • Kamath-Loeb AS, Johansson E, Burgers PM, Loeb LA . 2000 Proc. Natl. Acad. Sci. USA 97: 4603–4608

  • Kamath-Loeb AS, Shen JC, Loeb LA, Fry M . 1998 J. Biol. Chem. 273: 34145–34150

  • Karow JK, Chakraverty RK, Hickson ID . 1997 J. Biol. Chem. 272: 30611–30614

  • Karow JK, Li A, Constantinou JL, West SC, Hickson ID . 2000 Proc. Natl. Acad. Sci. USA 97: 6504–6508

  • Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y . 1999 Nat. Genet. 22: 82–84

  • Krepinsky AB, Heddle JA, German J . 1979 Hum. Genet. 50: 151–156

  • Krepinsky AB, Rainbow AJ, Heddle JA . 1980 Mutat. Res. 69: 357–368

  • Kurihara T, Tatsumi K, Takahashi H, Inoue M . 1987 Mutat. Res. 183: 197–202

  • Lebel M, Spillare EA, Harris CC, Leder P . 1999 J. Biol. Chem. 274: 37795–37799

  • Machwe A, Ganunis R, Bohr VA, Orren DK . 2000 Nucleic Acids Res. 28: 2762–2770

  • Mushegian AR, Bassett DE, Boguski MS, Bork P, Koonin EV . 1997 Proc. Natl. Acad. Sci. USA 94: 5831–5836

  • Nakayama OK, Irino N, Nakayama H . 1985 Mol. Gen. Genet. 200: 266–271

  • Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM . 1997 Hum. Genet. 101: 121–125

  • Okada M, Goto M, Furuichi Y, Sugimoto M . 1998 Biol. Pharm. Bull. 21: 235–239

  • Onoda F, Seki M, Miyajima A, Enomoto T . 2001 Mol. Gen. Genet. 264: 702–708

  • Orren DK, Machwe A, Karmakar P, Piotrowski J, Cooper MP, Bohr VA . 2001 Nucleic Acids Res. 29: 1926–1934

  • Poot M, Gollahon KA, Rabinovitch PS . 1999 Hum. Genet. 104: 10–14

  • Puranam KL, Blackshear PJ . 1994 J. Biol. Chem. 269: 29838–29845

  • Rosin MP, German J . 1985 Hum. Genet. 71: 187–191

  • Salk D, Bryant E, Hoehn H, Johnston P, Martin GM . 1985 Adv. Exp. Med. Biol. 190: 305–311

  • Seki M, Miyazawa H, Tada S, Yanagisawa J, Yamaoka T, Hoshino S, Ozawa K, Eki T, Nogami M, Okumura K, Taguchi H, Hanaoka F, Enomoto T . 1994 Nucleic Acids Res. 22: 4566–4573

  • Shen JC, Gray MD, Oshima J, Kamath-Loeb AS, Fry M, Loeb LA . 1998 J. Biol. Chem. 273: 34139–34144

  • Shen JC, Loeb LA . 2000 Nucleic Acids Res. 28: 3260–3268

  • Shimamoto A, Nishikawa K, Kitao S, Furuichi Y . 2000 Nucleic Acids Res. 28: 1647–1655

  • Shiraishi Y, Yosida TH, Sandberg AA . 1985 Proc. Natl. Acad. Sci. USA 82: 5102–5106

  • Smith GJ, Grisham JW . 1983 Mutat. Res. 111: 405–417

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S . 1998 EMBO J. 17: 598–608

  • Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M, Takeda S . 1999 Mol. Cell. Biol. 19: 5166–5169

  • Sonoda E, Takata M, Yamashita YM, Morrison C, Takeda S . 2001 Proc. Natl. Acad. Sci. USA 98: 8388–8394

  • Stewart E, Chapman CR, Al-Khodairy F, Carr AM, Enoch T . 1997 EMBO J. 16: 2682–2692

  • Sun H, Karow JK, Hickson ID, Maizels N . 1998 J. Biol. Chem. 273: 27587–27592

  • Suzuki N, Shimamoto A, Imamura O, Kuromitsu J, Kitao S, Goto M, Furuichi Y . 1997 Nucleic Acids Res. 25: 2973–2978

  • Suzuki N, Shiratori M, Goto M, Furuichi Y . 1999 Nucleic Acids Res. 27: 2361–2368

  • Takao N, Kato H, Mori R, Morrison C, Sonada E, Sun X, Shimizu H, Yoshioka K, Takeda S, Yamamoto K . 1999 Oncogene 18: 7002–7009

  • Tornaletti S, Pfeifer GP . 1996 Bioessays 18: 221–228

  • Tsao YP, Russo A, Nyamuswa G, Silber R, Liu LF . 1993 Cancer Res. 53: 5908–5914

  • Wang W, Seki M, Narita Y, Sonoda E, Takeda S, Yamada K, Masuko T, Katada T, Enomoto T . 2000 EMBO J. 19: 3428–3435

  • Watt PM, Louis EJ, Borts RH, Hickson ID . 1995 Cell. 81: 253–260

  • Watt PM, Hickson ID, Borts RH, Louis EJ . 1996 Genetics 144: 935–945

  • Wood RD . 1989 Biochemistry 28: 8287–8292

  • Yamagata K, Kato J, Shimamoto A, Goto M, Furuichi Y, Ikeda H . 1998 Proc. Natl. Acad. Sci. USA 95: 8733–8738

  • Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T, Hiraoka Y, Yamashita YM, Yagi T, Takata M, Price C, Kakazu N, Takeda S . 1999 EMBO J. 18: 6619–6629

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD . 1996 Science 272: 258–262

  • Zhang YL, Shen YC, Wang ZO, Chen HX, Guo X, Cheng YC, Lee KH . 1992 J. Nat. Prod. 55: 1100–1111

Download references

Acknowledgements

We thank Eiichiro Sonoda at Kyoto University and Minoru Takata at Kawasaki Medical School for their valuable technical advice. We also thank Dr William Brown at Oxford University for his generous gift of the chicken HPRT targeting construct. We would like to acknowledge Martin Lavin at Queensland Institute of Medical Research in Australia for critically reading the manuscript. This work was supported by the Drug Organization supervised by the Ministry of Health and Welfare of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehisa Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamura, O., Fujita, K., Itoh, C. et al. Werner and Bloom helicases are involved in DNA repair in a complementary fashion. Oncogene 21, 954–963 (2002). https://doi.org/10.1038/sj.onc.1205143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205143

Keywords

This article is cited by

Search

Quick links