Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Paxillin null embryonic stem cells are impaired in cell spreading and tyrosine phosphorylation of focal adhesion kinase

Abstract

Paxillin is a focal-adhesion associated protein implicated in the regulation of integrin signaling and organization of the actin cytoskeleton. Paxillin associates with numerous signaling molecules including adaptor molecules (p130Cas, CRK), kinases (FAK, Pyk2, PAK and SRC), tyrosine phosphatases (PTP–PEST), ARF–GAP proteins (p95pkl, PAG3) and papillomavirus E6 oncoproteins. Although paxillin is tyrosine phosphorylated in cellular processes such as cell attachment and spreading, little direct evidence is available about paxillin's role in these events. Targeted gene disruption was used to generate paxillin null mouse embryonic stem (ES) cells and paxillin null differentiated cells. Paxillin null ES cells exhibit delayed spreading on integrin binding substrates fibronectin and laminin, and there is reduced tyrosine phosphorylation of Focal Adhesion Kinase (FAK). Both of these phenotypes are recovered in paxillin knockout cells upon exogenous re-expression of paxillin. The individual LD motifs of paxillin that are binding sites for FAK, vinculin and ARF–GAP proteins, as well as tyrosine residues that when phosphorylated create binding sites for CRK family members, are dispensable for FAK phosphorylation and early cell spreading. These results demonstrate that paxillin contributes to attachment-dependent tyrosine phosphorylation of FAK and early cell spreading in ES cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML . 1999 J. Cell. Biol. 144: 1019–1031

  • Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC, Hanafusa H . 1993 Mol. Cell. Biol. 13: 4648–4656

  • Brown MC, Turner CE . 1999 J. Cell. Biochem. 76: 99–108

  • Brown MC, Curtis MS, Turner CE . 1998a Nat. Struct. Biol. 5: 677–678

  • Brown MC, Perrotta JA, Turner CE . 1998b Mol. Cell. Biol. 9: 1803–1816

  • Brown MC, Perrotta JA, Turner CE . 1996 J. Cell. Biol. 135: 1109–1123

  • Buckley CD, Rainger GE, Bradfield PF, Nash GB, Simmons DL . 1998 Mol. Membr. Biol. 15: 167–176

  • Cote JF, Turner CE, Tremblay ML . 1999 J. Biol. Chem. 274: 20550–20560

  • Feller SM, Posern G, Voss J, Kardinal C, Sakkab D, Zheng J, Knudsen BS . 1998 J. Cell. Physiol. 177: 535–532

  • Giancotti FG . 1997 Curr. Opin. Cell Biol. 9: 691–700

  • Giancotti FG, Ruoslahti E . 1999 Science 285: 1028–1032

  • Glenney JR, Zokas L . 1989 J. Cell. Biol. 108: 2401–2408

  • Guan JL . 1997 Int. J. Biochem. Cell. Biol. 29: 1085–1096

  • Herreros L, Rodriquez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabanas C, Sanchez-Madrid F, Longo N, Turner CE, Sanchez-Mateos P . 2000 J. Biol. Chem. 275: 26436–26440

  • Hildebrand JD, Schaller MD, Parsons JT . 1993 J. Cell. Biol. 123: 993–1005

  • Hildebrand JD, Schaller MD, Parsons JT . 1995 Mol. Cell. Biol. 6: 637–647

  • Humphries M . 1998 Curr. Prot. Cell Biol. 1: 9.1.1–9.1.11

  • Igishi T, Fukuhara S, Patel V, Katz BZ, Yamada KM, Gutkind JS . 1999 J. Biol. Chem. 274: 30738–30746

  • Kondo A, Hashimoto S, Yano H, Nagayama K, Mazaki Y, Sabe H . 2000 Mol. Cell. Biol. 11: 1315–1327

  • Lewis JM, Schwartz MA . 1998 J. Biol. Chem. 273: 14225–14230

  • Lipsky BP, Beal CR, Stanton DE . 1998 J. Biol. Chem. 273: 11709–11713

  • Liu S, Thomas SM, Woodside DG, Rose DM, Kiosses WB, Pfaff M, Ginsberg MH . 1999 Nature 402: 676–681

  • Lu W, Mayer BJ . 1999 Oncogene 18: 797–806

  • Matise MPA, Auerbach W, Joyner AL . 2000 Production of targeted embryonic stem cell clones second edn Oxford University press, New York

    Google Scholar 

  • Mazaki Y, Hashimoto S, Okawa K, Tsubouchi A, Nakamura K, Yagi R, Yano H, Kondo A, Iwamatsu A, Mizoguchi A, Sabe H . 2001 Mol. Cell. Biol. 12: 645–662

  • Mortensen RM, Conner DA, Chao S, Geisterfer-Lowrance AA, Seidman JG . 1992 Mol. Cell. Biol. 12: 2391–2395

  • Nagy A, Rossant J, Nagy R, Abramow NW, Roder JC . 1993 Proc. Natl. Acad. Sci. USA 90: 8424–8428

  • Nikolopoulos SN, Turner CE . 2000 J. Cell. Biol. 151: 1435–1448

  • Nikolopoulos SN, Turner CE . 2001 J. Biol. Chem. 13: 13–

  • Norman JC, Jones D, Barry ST, Holt MR, Cockcroft S, Critchley DR . 1998 J. Cell. Biol. 143: 1981–1995

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y . 1997 FEBS Lett. 407: 313–319

  • Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM . 2000 J. Cell. Biol. 148: 957–970

  • Priddle H, Hemmings L, Monkley S, Woods A, Patel B, Sutton D, Dunn GA, Zicha D, Critchley DR . 1998 J. Cell. Biol. 142: 1121–1133

  • Richardson A, Parsons T . 1996 Nature 380: 538–540

  • Schaller MD, Parsons JT . 1994 Curr. Opin. Cell Biol. 6: 705–710

  • Schlaepfer DD, Hunter T . 1996 Cell Struct. Funct. 21: 445–450

  • Schlaepfer DD, Hauck CR, Sieg DJ . 1999 Prog. Biophys. Mol. Biol. 71: 435–478

  • Shen Y, Schaller MD . 1999 Mol. Cell. Biol. 10: 2507–2518

  • Shen Y, Lyons P, Cooley M, Davidson D, Veillette A, Salgia R, Griffin JD, Schaller MD . 2000 J. Biol. Chem. 275: 1405–1413

  • Shen Y, Schneider G, Cloutier JF, Veillette A, Schaller MD . 1998 J. Biol. Chem. 273: 6474–6481

  • Shibanuma M, Mashimo J, Kuroki T, Nose K . 1994 J. Biol. Chem. 269: 26767–26774

  • Thomas JW, Cooley MA, Broome JM, Salgia R, Griffin JD, Lombardo CR, Schaller MD . 1999 J. Biol. Chem. 274: 36684–36692

  • Tong X, Salgia R, Li JL, Griffin JD, Howley PM . 1997 J. Biol. Chem. 272: 33373–33376

  • Tozer EC, Hughes PE, Loftus JC . 1996 Biochem. Cell. Biol. 74: 785–798

  • Tucker KL, Beard C, Dausmann J, Jackson-Grusby L, Laird PW, Lei H, Li E, Jaenisch R . 1996 Genes Dev. 10: 1008–1020

  • Turner CE . 1994 Bioessays 16: 47–52

  • Turner CE . 1998 Int. J. Biochem. Cell. Biol. 30: 955–959

  • Turner CE . 2000a Nat. Cell. Biol. 2: E231–E236

  • Turner CE . 2000b J. Cell. Sci. 113: Pt 23 4139–4140

  • Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS . 1999 J. Cell. Biol. 145: 851–863

  • Turner CE, Glenney Jr J, Burridge K . 1990 J. Cell. Biol. 111: 1059–1068

  • Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC . 1991 Cell 65: 1153–1163

  • Vande Pol SB, Brown MC, Turner CE . 1998 Oncogene 16: 43–52

  • Wheeler GN, Hynes RO . 2001 Gene 262: 291–299

  • Wiles MV . 1993 Methods Enzymol. 225: 900–918

Download references

Acknowledgements

The authors wish to thank Dr Chris Turner for providing the paxillin wild type cDNA and the 1–331 mutant of paxillin, and Drs Ron Conlon and David LePage for the generous gifts of the ES cells, targeting vectors, and helpful advise. The authors also thank Drs Lloyd Culp and Susann Brady-Kalnay for critical reading of this manuscript. This work was supported by NIH grant CA69292 to S Vande Pol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Vande Pol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, R., Bohl, J. & Vande Pol, S. Paxillin null embryonic stem cells are impaired in cell spreading and tyrosine phosphorylation of focal adhesion kinase. Oncogene 21, 96–107 (2002). https://doi.org/10.1038/sj.onc.1205013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205013

Keywords

This article is cited by

Search

Quick links