Abstract
Paxillin is a focal-adhesion associated protein implicated in the regulation of integrin signaling and organization of the actin cytoskeleton. Paxillin associates with numerous signaling molecules including adaptor molecules (p130Cas, CRK), kinases (FAK, Pyk2, PAK and SRC), tyrosine phosphatases (PTP–PEST), ARF–GAP proteins (p95pkl, PAG3) and papillomavirus E6 oncoproteins. Although paxillin is tyrosine phosphorylated in cellular processes such as cell attachment and spreading, little direct evidence is available about paxillin's role in these events. Targeted gene disruption was used to generate paxillin null mouse embryonic stem (ES) cells and paxillin null differentiated cells. Paxillin null ES cells exhibit delayed spreading on integrin binding substrates fibronectin and laminin, and there is reduced tyrosine phosphorylation of Focal Adhesion Kinase (FAK). Both of these phenotypes are recovered in paxillin knockout cells upon exogenous re-expression of paxillin. The individual LD motifs of paxillin that are binding sites for FAK, vinculin and ARF–GAP proteins, as well as tyrosine residues that when phosphorylated create binding sites for CRK family members, are dispensable for FAK phosphorylation and early cell spreading. These results demonstrate that paxillin contributes to attachment-dependent tyrosine phosphorylation of FAK and early cell spreading in ES cells.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML . 1999 J. Cell. Biol. 144: 1019–1031
Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC, Hanafusa H . 1993 Mol. Cell. Biol. 13: 4648–4656
Brown MC, Turner CE . 1999 J. Cell. Biochem. 76: 99–108
Brown MC, Curtis MS, Turner CE . 1998a Nat. Struct. Biol. 5: 677–678
Brown MC, Perrotta JA, Turner CE . 1998b Mol. Cell. Biol. 9: 1803–1816
Brown MC, Perrotta JA, Turner CE . 1996 J. Cell. Biol. 135: 1109–1123
Buckley CD, Rainger GE, Bradfield PF, Nash GB, Simmons DL . 1998 Mol. Membr. Biol. 15: 167–176
Cote JF, Turner CE, Tremblay ML . 1999 J. Biol. Chem. 274: 20550–20560
Feller SM, Posern G, Voss J, Kardinal C, Sakkab D, Zheng J, Knudsen BS . 1998 J. Cell. Physiol. 177: 535–532
Giancotti FG . 1997 Curr. Opin. Cell Biol. 9: 691–700
Giancotti FG, Ruoslahti E . 1999 Science 285: 1028–1032
Glenney JR, Zokas L . 1989 J. Cell. Biol. 108: 2401–2408
Guan JL . 1997 Int. J. Biochem. Cell. Biol. 29: 1085–1096
Herreros L, Rodriquez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabanas C, Sanchez-Madrid F, Longo N, Turner CE, Sanchez-Mateos P . 2000 J. Biol. Chem. 275: 26436–26440
Hildebrand JD, Schaller MD, Parsons JT . 1993 J. Cell. Biol. 123: 993–1005
Hildebrand JD, Schaller MD, Parsons JT . 1995 Mol. Cell. Biol. 6: 637–647
Humphries M . 1998 Curr. Prot. Cell Biol. 1: 9.1.1–9.1.11
Igishi T, Fukuhara S, Patel V, Katz BZ, Yamada KM, Gutkind JS . 1999 J. Biol. Chem. 274: 30738–30746
Kondo A, Hashimoto S, Yano H, Nagayama K, Mazaki Y, Sabe H . 2000 Mol. Cell. Biol. 11: 1315–1327
Lewis JM, Schwartz MA . 1998 J. Biol. Chem. 273: 14225–14230
Lipsky BP, Beal CR, Stanton DE . 1998 J. Biol. Chem. 273: 11709–11713
Liu S, Thomas SM, Woodside DG, Rose DM, Kiosses WB, Pfaff M, Ginsberg MH . 1999 Nature 402: 676–681
Lu W, Mayer BJ . 1999 Oncogene 18: 797–806
Matise MPA, Auerbach W, Joyner AL . 2000 Production of targeted embryonic stem cell clones second edn Oxford University press, New York
Mazaki Y, Hashimoto S, Okawa K, Tsubouchi A, Nakamura K, Yagi R, Yano H, Kondo A, Iwamatsu A, Mizoguchi A, Sabe H . 2001 Mol. Cell. Biol. 12: 645–662
Mortensen RM, Conner DA, Chao S, Geisterfer-Lowrance AA, Seidman JG . 1992 Mol. Cell. Biol. 12: 2391–2395
Nagy A, Rossant J, Nagy R, Abramow NW, Roder JC . 1993 Proc. Natl. Acad. Sci. USA 90: 8424–8428
Nikolopoulos SN, Turner CE . 2000 J. Cell. Biol. 151: 1435–1448
Nikolopoulos SN, Turner CE . 2001 J. Biol. Chem. 13: 13–
Norman JC, Jones D, Barry ST, Holt MR, Cockcroft S, Critchley DR . 1998 J. Cell. Biol. 143: 1981–1995
Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y . 1997 FEBS Lett. 407: 313–319
Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM . 2000 J. Cell. Biol. 148: 957–970
Priddle H, Hemmings L, Monkley S, Woods A, Patel B, Sutton D, Dunn GA, Zicha D, Critchley DR . 1998 J. Cell. Biol. 142: 1121–1133
Richardson A, Parsons T . 1996 Nature 380: 538–540
Schaller MD, Parsons JT . 1994 Curr. Opin. Cell Biol. 6: 705–710
Schlaepfer DD, Hunter T . 1996 Cell Struct. Funct. 21: 445–450
Schlaepfer DD, Hauck CR, Sieg DJ . 1999 Prog. Biophys. Mol. Biol. 71: 435–478
Shen Y, Schaller MD . 1999 Mol. Cell. Biol. 10: 2507–2518
Shen Y, Lyons P, Cooley M, Davidson D, Veillette A, Salgia R, Griffin JD, Schaller MD . 2000 J. Biol. Chem. 275: 1405–1413
Shen Y, Schneider G, Cloutier JF, Veillette A, Schaller MD . 1998 J. Biol. Chem. 273: 6474–6481
Shibanuma M, Mashimo J, Kuroki T, Nose K . 1994 J. Biol. Chem. 269: 26767–26774
Thomas JW, Cooley MA, Broome JM, Salgia R, Griffin JD, Lombardo CR, Schaller MD . 1999 J. Biol. Chem. 274: 36684–36692
Tong X, Salgia R, Li JL, Griffin JD, Howley PM . 1997 J. Biol. Chem. 272: 33373–33376
Tozer EC, Hughes PE, Loftus JC . 1996 Biochem. Cell. Biol. 74: 785–798
Tucker KL, Beard C, Dausmann J, Jackson-Grusby L, Laird PW, Lei H, Li E, Jaenisch R . 1996 Genes Dev. 10: 1008–1020
Turner CE . 1994 Bioessays 16: 47–52
Turner CE . 1998 Int. J. Biochem. Cell. Biol. 30: 955–959
Turner CE . 2000a Nat. Cell. Biol. 2: E231–E236
Turner CE . 2000b J. Cell. Sci. 113: Pt 23 4139–4140
Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS . 1999 J. Cell. Biol. 145: 851–863
Turner CE, Glenney Jr J, Burridge K . 1990 J. Cell. Biol. 111: 1059–1068
Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC . 1991 Cell 65: 1153–1163
Vande Pol SB, Brown MC, Turner CE . 1998 Oncogene 16: 43–52
Wheeler GN, Hynes RO . 2001 Gene 262: 291–299
Wiles MV . 1993 Methods Enzymol. 225: 900–918
Acknowledgements
The authors wish to thank Dr Chris Turner for providing the paxillin wild type cDNA and the 1–331 mutant of paxillin, and Drs Ron Conlon and David LePage for the generous gifts of the ES cells, targeting vectors, and helpful advise. The authors also thank Drs Lloyd Culp and Susann Brady-Kalnay for critical reading of this manuscript. This work was supported by NIH grant CA69292 to S Vande Pol.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wade, R., Bohl, J. & Vande Pol, S. Paxillin null embryonic stem cells are impaired in cell spreading and tyrosine phosphorylation of focal adhesion kinase. Oncogene 21, 96–107 (2002). https://doi.org/10.1038/sj.onc.1205013
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.onc.1205013
Keywords
This article is cited by
-
Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell–cell adhesion
Scientific Reports (2021)
-
Paxillin: a crossroad in pathological cell migration
Journal of Hematology & Oncology (2017)
-
HPV16 E6 oncoprotein increases cell adhesion in human keratinocytes
Archives of Virology (2009)
-
Gene function in early mouse embryonic stem cell differentiation
BMC Genomics (2007)
-
An α4 integrin–paxillin–Arf-GAP complex restricts Rac activation to the leading edge of migrating cells
Nature Cell Biology (2005)