Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways

Abstract

Environmental signals in the cellular milieu such as hypoxia, growth factors, extracellular matrix (ECM), or cell-surface molecules on adjacent cells can activate signaling pathways that communicate the state of the environment to the nucleus. Several groups have evaluated gene expression or signaling pathways in response to increasing cell density as an in vitro surrogate for in vivo cell-cell interactions. These studies have also perhaps assumed that cells grown at various densities in standard in vitro incubator conditions do not have different pericellular oxygen levels. However, pericellular hypoxia can be induced by increasing cell density, which can exert profound influences on the target cell lines and may explain a number of findings previously attributed to normoxic cell-cell interactions. Thus, we first sought to test the hypothesis that cell-cell interactions as evaluated by the surrogate approach of increasing in vitro cell density in routine normoxic culture conditions results in pericellular hypoxia in prostate cancer cells. Second, we sought to evaluate whether such interactions affect transcription mediated by the hypoxia response element (HRE). Thirdly, we sought to elucidate the signal transduction pathways mediating the induction of HRE in response to cell density induced pericellular hypoxia in routine normoxic culture conditions. Our results indicate that paracrine cell interactions can induce nuclear localization of HIF-1a protein and this translocation is associated with strong stimulation of the HRE-reporter activity. We also make the novel observation that cell density-induced activity of the HRE is dependent on nitric oxide production, which acts as a diffusible paracrine factor secreted by densely cultured cells. These results suggest that paracrine cell interactions associated with pericellular hypoxia lead to the physiological induction of HRE activity via the cooperative action of Ras, MEK1, HIF-1a via pericellular diffusion of nitric oxide. In addition, these results highlight the importance of examining pericellular hypoxia as a possible stimulus in experiments involving in vitro cell density manipulation even in routine normoxic culture conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR . 1995 J. Biol. Chem. 270: 27489–27494

  • Amano F, Noda T . 1995 FEBS Lett. 368: 425–428

  • Baird A, Durkin T . 1986 Biochem. Biophys. Res. Commun. 138: 476–482

  • Batt DB, Roberts TM . 1998 J. Biol. Chem. 273: 3408–3414

  • Bedrin MS, Abolafia CM, Thompson JF . 1997 J. Cell Physiol. 172: 126–136

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshet E . 1998 Nature, 394: 485–490

  • Catling AD, Schaeffer HJ, Reuter CW, Reddy GR, Weber MJ . 1995 Mol. Cell. Biol. 15: 5214–5225

  • Cornil I, Theodorescu D, Man S, Herlyn M, Jambrosic J, Kerbel RS . 1991 Proc. Natl. Acad. Sci. USA 88: 6028–6032

  • Cornwell TL, Soff GA, Traynor AE, Lincoln TM . 1994 J. Vasc. Res. 31: 330–337

  • Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC . 1995 FEBS Lett. 364: 229–233

  • DeSilva DR, Jones EA, Favata MF, Jaffee BD, Magolda RL, Trzaskos JM, Scherle PA . 1998 J. Immunol. 160: 4175–4181

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL . 1996 Mol. Cell. Biol. 16: 4604–4613

  • Gioeli D, Mandell JW, Petroni GR, Frierson Jr HF, Weber MJ . 1999 Cancer Res. 59: 279–284

  • Groebe K, Vaupel P . 1988 Int. J. Radiat. Oncol. Biol. Phys. 15: 691–697

  • Guillemin K, Krasnow MA . 1997 Cell 89: 9–12

  • Hartsough MT, Frey RS, Zipfel PA, Buard A, Cook SJ, McCormick F, Mulder KM . 1996 J. Biol. Chem. 271: 22368–22375

  • Hockel M, Vaupel P . 2001 J. Natl. Cancer Inst. 93: 266–276

  • Huang LE, Willmore WG, Gu J, Goldberg MA, Bunn HF . 1999 J. Biol. Chem. 274: 9038–9044

  • Jiang BH, Rue E, Wang GL, Roe R, Semenza GL . 1996 J. Biol. Chem. 271: 17771–17778

  • Jung F, Palmer LA, Zhou N, Johns RA . 2000 Circ. Res. 86: 319–325

  • Kharitonov VG, Sharma VS, Magde D, Koesling D . 1999 Biochemistry 38: 10699–10706

  • Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura TFDA, Addeo R, Makuuchi M, Esumi H . 2000 Blood 95: 189–197

  • Kobayashi S, Okumura N, Nakamoto T, Okada M, Hirai H, Nagai K . 1997 J. Biol. Chem. 272: 16262–16267

  • Koura AN, Liu W, Kitadai Y, Singh RK, Radinsky R, Ellis LM . 1996 Cancer Res. 56: 3891–3894

  • Leung LK, Do L, Wang TT . 1998 Cancer Lett. 124: 47–52

  • Li PM, Goldstein BJ . 1996 J. Cell. Biochem. 61: 31–38

  • Lomonosova EE, Kirsch M, de Groot H . 1998 Free Radic. Biol. Med. 25: 493–503

  • Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . 1997 Blood 90: 3322–3331

  • Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ . 1996 Cancer Res. 56: 3436–3440

  • Melillo G, Taylor LS, Brooks A, Musso T, Cox GW, Varesio L . 1997 J. Biol. Chem. 272: 12236–12243

  • Metzen E, Wolff M, Fandrey J, Jelkmann W . 1995 Respir. Physiol. 100: 101–106

  • Minamiyama Y, Takemura S, Inoue M . 1997 Arch. Biochem. Biophys. 341: 186–192

  • Minet E, Arnould T, Michel G, Roland I, Mottet D, Raes M, Remacle J, Michiels C . 2000 FEBS Lett. 468: 53–58

  • Moulder JE, Rockwell S . 1984 Int. J. Radiat. Oncol. Biol. Phys. 10: 695–712

  • Mukhopadhyay D, Tsiokas L, Sukhatme VP . 1998 Gene Expr. 7: 53–60

  • Palmer LA, Johns RA . 1998 Chest 114: 33S–34S

  • Palmer LA, Semenza GL, Stoler MH, Johns RA . 1998 Am. J. Physiol. 274: L212–L219

  • Pang L, Sawada T, Decker SJ, Saltiel AR . 1995 J. Biol. Chem. 270: 13585–13588

  • Perkinson RA, Kuo BA, Norton PA . 1996 J. Cell. Biochem. 63: 74–85

  • Polk DB, McCollum GW, Carpenter G . 1995 J. Cell. Physiol. 162: 427–433

  • Posern G, Weber CK, Rapp UR, Feller SM . 1998 J. Biol. Chem. 273: 24297–24300

  • Prentice H, Bishopric NH, Hicks MN, Discher D, Wu X, Wylie AA, Webster KA . 1997 Cardiovasc. Res. 35: 567–574

  • Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J . 1999 J. Biol. Chem. 274: 32631–32637

  • Rouquette M, Stevens C, Blake DR, Harrison R, Whish J, Whish WD . 1997 Biochem. Soc. Trans. 25: 532S

  • Ryan HE, Lo J, Johnson RS . 1998 EMBO J. 17: 3005–3015

  • Salceda S, Beck I, Srinivas V, Caro J . 1997 Kidney Int. 51: 556–559

  • Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE . 1991 Proc. Natl. Acad. Sci. USA 88: 5680–5684

  • Semenza GL, Wang GL . 1992 Mol. Cell. Biol. 12: 5447–5454

  • Sheta EA, Harding MA, Conaway MR, Theodorescu D . 2000 J. Natl. Cancer Inst. 92: 1065–1073

  • Silverstein JL, Steen VD, Medsger Jr TA, Falanga V . 1988 Arch. Dermatol. 124: 1379–1382

  • Singh RK, Llansa N, Bucana CD, Sanchez R, Koura A, Fidler IJ . 1996 Cell Growth Differ. 7: 397–404

  • Sun L, Wu S, Coleman K, Fields KC, Humphrey LE, Brattain MG . 1994 Exp. Cell Res. 214: 215–224

  • Sutherland RM . 1988 Science 240: 177–184

  • Theodorescu D, Caltabiano M, Greig R, Rieman D, Kerbel RS . 1991 J. Cell Physiol. 148: 380–390

  • Tokuda Y, Crane S, Yamaguchi Y, Zhou L, Falanga V . 2000 J. Cell Physiol. 182: 414–420

  • Wang GL, Semenza GL . 1993 Proc. Natl. Acad. Sci. USA 90: 4304–4308

  • Wang GL, Semenza GL . 1995 J. Biol. Chem. 270: 1230–1237

  • Weijerman PC, Konig JJ, Wong ST, Niesters HG, Peehl DM . 1994 Cancer Res. 54: 5579–5583

  • Werrlein RJ, Glinos AD . 1974 Nature 251: 317–319

  • Yoshimoto Y, Kim P, Sasaki T, Kirino T, Takakura K . 1995 J. Neurosurg. 83: 867–874

  • Zhong H, Agani F, Baccala AA, Laughner E, Rioseco-Camacho N, Isaacs WB, Simons JW, Semenza GL . 1998 Cancer Res. 58: 5280–5284

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL . 2000 Cancer Res. 60: 1541–1545

Download references

Acknowledgements

The authors would like to thank Drs KR Laderoute, F McCormick and GL Semenza for providing various plasmid DNA constructs, Drs SJ Parsons, and MJ Weber at the University of Virginia for providing different plasmid DNA constructs and many helpful suggestions and Dr Bettie Sue Masters, Department of Biochemistry, University of Texas at San Antonio for providing Oxyhemoglobin. This work was supported in part by an NIH training grant to MA Harding and a research grant from the American Cancer Society to D Theodorescu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Theodorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheta, E., Trout, H., Gildea, J. et al. Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways. Oncogene 20, 7624–7634 (2001). https://doi.org/10.1038/sj.onc.1204972

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204972

Keywords

This article is cited by

Search

Quick links