Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A splice variant of Skp2 is retained in the cytoplasm and fails to direct cyclin D1 ubiquitination in the uterine cancer cell line SK-UT

Abstract

Cyclin D1 is an important regulator of the transition from G1 into S phase of the cell cycle. The level to which cyclin D1 accumulates is tightly regulated. One mechanism contributing to the control of cyclin D1 levels is the regulation of its ubiquitination. SK-UT-1B cells are deficient in the degradation of D-type cyclins. We show here that p27, a substrate of the SCFSkp2 ubiquitin ligase complex, is coordinately stabilized in SK-UT-1B cells. Further, we show that expression of Skp2 in SK-UT-1B cells rescues the cyclin D1 and p27 degradation defect observed in this cell line. These results therefore indicate that the SCFSkp2 ubiquitin ligase complex affects the ubiquitination of cyclin D1. In addition, we show that SK-UT-1B cells express a novel splice variant of Skp2 that localizes to the cytoplasm and that cyclin D1 ubiquitination takes place in the nucleus. We propose that the translocation of Skp2 into the nucleus is required for the ubiquitination of cyclin D1 and that the absence of the SCFSkp2 complex in the nucleus of SK-UT-1B cells is the mechanism underlying the ubiquitination defect observed in this cell line. Finally, our data indicates that differential splicing of F-box proteins may represent an additional level of regulation of the F-box mediated ubiquitination pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amati B, Vlach J . 1999 Nature Cell. Biol. 1: E91–E93

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ . 1996 Cell 86: 263–274

    Article  CAS  Google Scholar 

  • Bortner DM, Rosenberg MP . 1997 Mol. Cell. Biol. 17: 453–459

    Article  CAS  Google Scholar 

  • Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M . 1999 EMBO J. 18: 5321–5333

  • Carrano AC, Eytan E, Hershko A, Pagano M . 1999 Nature Cell. Biol. 1: 193–199

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel M, Roberts JM, Sherr CJ . 1999 EMBO J. 18: 1571–1583

  • Dealy MJ, Nguyen KV, Lo J, Gstaiger M, Krek W, Elson D, Arbeit J, Kipreos ET, Johnson RS . 1999 Nature Genet. 23: 245–248

  • Demetrick DJ, Zhang H, Beach DH . 1996 Cytogenet Cell Genet. 73: 104–107

    Article  CAS  Google Scholar 

  • Deshaies RJ, Chau V, Kirschner M . 1995 EMBO J. 14: 303–312

  • Diehl JA, Cheng MG, Roussel MF, Sherr CJ . 1998 Genes Dev. 12: 3499–3511

  • Germain D, Russell A, Thompson A, Hendley J . 2000 J. Biol. Chem. 275: 12074–12079

    Article  CAS  Google Scholar 

  • Helin K . 1998 Curr. Opin. Gen. Dev. 8: 28–35

  • Krek W . 1998 Curr. Opin. Gen. Dev. 8: 36–42

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E . 1997 Genes Dev. 11: 847–862

  • Lammie GA, Fantl V, Smith R, Schuuring E, Brookes S, Michalides R, Dickson C, Arnold A, Peters G . 1991 Oncogene 6: 439–444

  • Lebwohl DE, Muise-Helmericks R, Sepp-Lorenzino L, Serve S, Timaul M, Bol R, Borgen P, Rosen N . 1994 Oncogene 9: 1925–1929

  • Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W . 1998 EMBO J. 17: 368–383

  • Lundberg AS, Weinberg RA . 1998 Mol. Cell. Biol. 18: 753–761

    Article  CAS  Google Scholar 

  • Marti A, Wirbelauer C, Scheffner M, Krek W . 1999 Nature Cell. Biol. 1: 14–19

  • Motokura T, Arnold A . 1993 Biochem. Biophys. Acta 1155: 63–78

  • Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A . 1991 Nature 350: 512–515

    Article  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K, Hatakeyama S . 2000 EMBO J. 19: 2069–2081

  • Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H . 1999 EMBO J. 18: 5310–5320

  • Russell A, Thompson A, Hendley J, Trute J, Armes J, Germain D . 1999 Oncogene 18: 1983–1991

    Article  CAS  Google Scholar 

  • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP . 2000 Nature 408: 381–386

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . 1995 Genes Dev. 9: 1149–1163

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW . 1997 Cell 91: 209–219

    Article  CAS  Google Scholar 

  • Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW . 1999 Science 284: 662–665

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W . 1999 Nature Cell. Biol. 1: 207–214

  • Swanson C, Ross J, Jackson PK . 2000 Proc. Natl. Acad. Sci. USA 97: 7796–7801

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H . 1999 Curr. Biol. 9: 661–664

  • Tyers M, Willems AR . 1999 Science 284: 601, 603–604

    Article  CAS  Google Scholar 

  • Wang T, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . 1994 Nature 369: 669–671

    Article  CAS  Google Scholar 

  • Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper JW, Cross JC, Tyers M . 1999 Curr. Biol. 9: 1191–1194

  • Weinberg RA . 1995 Cell 81: 323–330

    Article  CAS  Google Scholar 

  • Welcker M, Lukas J, Strauss M, Bartek J . 1996 Oncogene 13: 419–425

  • Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F, Krek W . 2000 EMBO J. 19: 5362–5375

  • Yu Z, Gervais JLM, Zhang H . 1998 Proc. Natl. Acad. Sci. USA 95: 11324–11329

  • Zhang H, Kobayashi R, Galaktionov K, Beach D . 1995 Cell 82: 915–925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs Matthew O'Connell, Patrick Humbert and Grant McArthur for critical reading of this manuscript and also Matthew Beasley for help with genomic structure analysis of Skp2. This work was supported by NHMRC grant no. 981080 and a Susan G Komen grant to D Germain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Germain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganiatsas, S., Dow, R., Thompson, A. et al. A splice variant of Skp2 is retained in the cytoplasm and fails to direct cyclin D1 ubiquitination in the uterine cancer cell line SK-UT. Oncogene 20, 3641–3650 (2001). https://doi.org/10.1038/sj.onc.1204501

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204501

Keywords

This article is cited by

Search

Quick links