Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

Evidence of a possible epigenetic inactivation mechanism operating on a region of mouse chromosome 19 in γ-radiation-induced thymic lymphomas

Abstract

Loss of heterozygosity (LOH) analysis, performed in 68 γ-radiation-induced primary thymic lymphomas of F1 hybrid mice, provided evidence of significant LOH on chromosome 19 in a region defined by the D19Mit106 (22 cM) and D19Mit100 (27 cM) markers (Thymic Lymphoma Suppressor Region 8, TLSR8). Cd95 and Pten, two genes mapped at this region, were inactivated in a vast majority of these tumors (85.3% for Cd95 and 61.8% for Pten). Moreover, altered expression of Cd95 and Pten occurred concomitantly in 34 of 68 (50%) thymic lymphomas suggesting a coordinated mechanism of inactivation of these genes. Surprisingly, we also found that Jak2, a proto-oncogene located between Cd95 and Pten, was simultaneously inactivated in a significant fraction of the tumors analysed (24 of 34, 70.6%). Taken together these findings and the lack of mutations in the coding sequences of the mentioned genes clearly suggest a possible regional epigenetic inactivation mechanism on mouse chromosome 19 operating during the development of these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Baylin SB, Herman JG . 2000 Trends Genet. 16: 168–174

  • Butler LM, Dobrovic A, Cowled PA . 2000 Br. J. Cancer 82: 131–135

  • Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D . 1997 Cancer Res. 57: 4997–5000

  • Dahia PL, Fitzgerald MG, Zhang X, Marsh DJ, Zheng Z, Pietsh T, von Deimling A, Haluska FG, Haber DA, Eng C . 1998 Oncogene 16: 2403–2406

  • Dahia PLM, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H, Marsh DJ, Ritz J, Freedman A, Stiles C, Eng C . 1999 Hum. Mol. Genet. 8: 185–193

  • Dammann R, Li C, Yoon J-H, Chin PL, Bates S, Pfeifer GP . 2000 Nature Genet. 25: 315–319

  • Dubrova YE, Plumb M, Gutierrez B, Boulton E, Jeffreys AJ . 2000 Nature 405: 37

  • Feinberg AP . 1993 Nature Genet. 4: 110–113

  • Feinberg AP, Rainier S, DeBaunn MR . 1995 J. Natl. Cancer Inst. Monogr. 17: 21–26

  • Herranz M, Santos J, Salido E, Fernández-Piqueras J, Serrano M . 1999 Cancer Res. 59: 2068–2071

  • Liu R, Liu C-B, Golam Mohi M, Arai K, Watanabe S . 2000 Oncogene 19: 571–579

  • Malumbres M, Pérez de Castro I, Santos J, Meléndez B, Mangues R, Serrano M, Pellicer A, Fernández-Piqueras J . 1997 Oncogene 14: 1361–1370

  • Malumbres M, Pérez de Castro I, Santos J, Fernández-Piqueras J, Pellicer A . 1999 Oncogene 18: 385–396

  • Matsumoto Y, Kosugi S, Shinbo T, Chou D, Ohashi M, Wakabayashi Y, Sakai K, Okumoto M, Mori N, Aizawa S, Niwa O, Kominami R . 1998 Oncogene 16: 2747–2754

  • Meléndez B, Santos J, Fernández-Piqueras J . 1999 Oncogene 18: 4166–4169

  • Okumoto M, Park Y-G, Song C-W, Mori N . 1999 Cancer Lett. 135: 223–228

  • Podsypanina K, Hedrick-Ellenson L, Nemes A, Gu J, Tamura M, Yamada KM, Cordón-Cardo C, Catoretti G, Fisher P . 1999 Proc. Natl. Acad. Sci. USA 96: 1563–1568

  • Sachs RK, Hiatky LR, Trask BJ . 2000 Trends Genet. 16: 143–146

  • Santos J, Pérez de Castro I, Herranz M, Pellicer A, Fernández-Piqueras J . 1996 Oncogene 12: 669–676

  • Santos J, Herranz M, Pérez de Castro I, Pellicer A, Fernández-Piqueras J . 1998 Oncogene 17: 925–929

  • Suzuki A, De la Pompa JL, Stambolic V, Elia AJ, Sasaki T, Del Barco-Barrantes I, Ho A, Wakeham A, Itie A, Khoo W, Fukumoto M, Mak TW . 1998 Curr. Biol. 8: 1169–1178

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S . 1992 Nature 356: 314–317

  • Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL . 1998 Proc. Natl. Acad. Sci. USA 95: 5246–5250

  • Yu C-L, Jove R, Burakoff SJ . 1997 J. Immunol. 159: 5206–5210

Download references

Acknowledgements

This work was supported in part by grants PM99/003 (Ministerio Educación y Cultura, Spain) and 08/0043/1998 (Comunidad Autónoma de Madrid, Spain) to J Fernández-Piqueras, and BMH4-98-3426 (BIOMED 2 program, European Union) and 08/0008/1999 (Comunidad Autónoma de Madrid, Spain) to J Santos.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., Herranz, M., Fernández, M. et al. Evidence of a possible epigenetic inactivation mechanism operating on a region of mouse chromosome 19 in γ-radiation-induced thymic lymphomas. Oncogene 20, 2186–2189 (2001). https://doi.org/10.1038/sj.onc.1204297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204297

Keywords

This article is cited by

Search

Quick links