Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism

Abstract

Fibroblast growth factor-2 (FGF-2) is a powerful mitogen and angiogenic factor whose expression is strongly regulated at the translational level. The constitutive upregulation of FGF-2 isoforms in transformed cells prompted us to investigate the post-transcriptional effects of a tumour suppressor, p53, on FGF-2 expression. We show here in human primary skin fibroblasts that the cell density-dependent variation of FGF-2 mRNA translatability was inversely correlated with endogenous p53 expression. Transient cell transfection revealed an inhibitory effect of wild-type p53 on the expression of chimeric FGF–CAT proteins. RNAse mapping experiments ruled out any effect of p53 on FGF–CAT mRNA accumulation, suggesting a translational inhibition. This inhibition was mediated by the FGF-2 mRNA leader, but not by vascular endothelial growth factor or platelet derived growth factor mRNA leaders. Neither p53-like protein p73, nor p21/waf had any inhibitory activity. Furthermore a set of hot spot mutants of p53 bearing mutations in the DNA binding domain had no post-transcriptional inhibitory effect. In contrast a p53 mutant of the transactivating domain was still able to block FGF–CAT expression, indicating that the post-transcriptional activity of p53 described here was independent of the trans-activation of target genes. Such data reveal a novel mechanism by which p53 efficiently blocks the expression of a major proliferating, anti-apoptotic and angiogenic gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

FGF:

fibroblast growth factor

bFGF:

basic fibroblast growth factor

IRES:

internal ribosome entry site

TGFβ1:

transforming growth factor β1

VEGF:

vascular endothelial growth factor

PDGF:

platelet differentiating growth factor

CAT:

chloramphenicol acetyl-transferase

ORF:

open reading frame

CMV:

cytomegalovirus

RT–PCR:

reverse transcription and polymerase chain reaction

UTR:

untranslated region.

References

  • Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC . 1999 Mol. Cell. Biol. 19: 505–514

  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B . 1990 Science 249: 912–915

  • Bernstein J, Sella O, Le SY, Elroy-Stein O . 1997 J. Biol. Chem. 272: 9356–9362

  • Bikfalvi A, Klein S, Pintucci G, Rifkin DB . 1997 Endocr. Rev. 18: 26–45

  • Bouck N . 1996 Biochim. Biophys. Acta 1287: 63–66

  • Bugler B, Amalric F, Prats H . 1991 Mol. Cell. Biol. 11: 573–577

  • Creancier L, Morello D, Mercier P, Prats AC . 2000 J. Cell. Biol. 150: 275–281

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B . 1993 Cell 75: 817–825

  • Ewen ME, Miller SJ . 1996 Biochim. Biophys. Acta 1242: 181–184

  • Ewen ME, Oliver CJ, Sluss HK, Miller SJ, Peeper DS . 1995 Genes Dev. 9: 204–217

  • Florkiewicz RZ, Sommer A . 1989 Proc. Natl. Acad. Sci. USA, 86: 3978–3981

  • Fuks Z, Persaud RS, Alfieri A, McLoughlin M, Ehleiter D, Schwartz JL, Seddon AP, Cordon-Cardo C, Haimovitz-Friedman A . 1994 Cancer Res. 54: 2582–2590

  • Galy B, Maret A, Prats AC, Prats H . 1999 Cancer Res. 59: 165–171

  • Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M . 1995 Genes Dev. 9: 2170–2183

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC . 1991 Science 253: 49–53

  • Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H . 1998 Mol. Cell. Biol. 18: 6178–6190

  • Jost CA, Marin MC, Kaelin Jr WG . 1997 Nature 389: 191–194

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D . 1997 Cell 90: 809–819

  • Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D . 1991 Cell 66: 1095–1104

  • Kumar V, Green S, Staub A, Chambon P . 1986 EMBO J. 5: 2231–2236

  • Lin J, Chen J, Elenbaas B, Levine AJ . 1994 Genes Dev. 8: 1235–1246

  • Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME . 2000 Mol. Cell. Biol. 20: 8420–8431

  • Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W . 1995 EMBO J. 14: 4442–4449

  • Nishimura T, Utsonomiya Y, Hoshikawa M, Ohuchi H, Itoh N . 1999 Biochim. Biophys. Acta 1444: 148–151

  • Oberosler P, Hloch P, Ramsperger U, Stahl H . 1993 EMBO J. 12: 2389–2396

  • Ory K, Legros Y, Auguin C, Soussi T . 1994 EMBO J. 13: 3496–3504

  • Prats AC, Vagner S, Prats H, Amalric F . 1992 Mol. Cell. Biol. 12: 4796–4805

  • Prats H, Kaghad M, Prats AC, Klagsbrun M, Lélias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D . 1989 Proc. Natl. Acad. Sci. USA 86: 1836–1840

  • Shaulian E, Resnitzky D, Shifman O, Blandino G, Amsterdam A, Yayon A, Oren M . 1997 Oncogene 15: 2717–2725

  • Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E . 1998 Mol. Cell. Biol. 18: 3112–3119

  • Vagner S, Gensac MC, Maret A, Bayard F, Amalric F, Prats H, Prats AC . 1995 Mol. Cell. Biol. 15: 35–44

  • Vagner S, Touriol C, Galy B, Audigier S, Gensac MC, Amalric F, Bayard F, Prats H, Prats AC . 1996 J. Cell. Biol. 135: 1391–1402

  • Yamashita T, Yoshioka M, Itoh N . 2000 Biochem. Biophys. Res. Commun. 277: 494–498

Download references

Acknowledgements

We thank Stephan Vagner for helpful discussions, D Warwick for English proofreading, R Couret for the pictures and C Touriol for his help to finish the manuscript. We are grateful to D Caput and M Kaghad (Sanofi Recherche, France) for the anti-p73 antibody and for the p73α and p21/waf cDNAs, to Dr E Elroy-Stein (Tel Aviv University, Israel) for the pPD1 plasmid, and to Bert Vogelstein (John Hopkins Oncology Center, Baltimore, MD, USA) for the gift of pc53-SN3 and pc53-SCX3 plasmids. This work was supported by grants from the Association pour la Recherche contre le Cancer, the Ligue Nationale contre le Cancer. B Galy had a fellowship from the Ligue Nationale contre le Cancer and then from Retina France. L Creancier was financed by Aventis and Retina France.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galy, B., Créancier, L., Zanibellato, C. et al. Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene 20, 1669–1677 (2001). https://doi.org/10.1038/sj.onc.1204271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204271

Keywords

This article is cited by

Search

Quick links