Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Differential requirements for ERK1/2 and P38 MAPK activation by thrombin in T cells. Role of P59Fyn and PKCε

Abstract

Activation of the mitogen-activated protein kinase (MAPK) cascade is a well documented mechanism for the G-protein-coupled receptors. Here, we have analysed the requirements for ERKs and p38 MAPK activation by thrombin in Jurkat T cells. We show that thrombin-mediated ERKs activation requires both PTK and PKC activities, whereas p38 MAPK activation is dependent only on PTKs. Thrombin-induced ERK and p38 MAPK activation was more pronounced in p56Lck deficient cells indicating that this PTK exerts a negative control on MAPK activity. Accordingly, overexpression of p50 Csk a kinase that inactivates p56Lck induced constitutive activation of ERKs. Requirement for a Src kinase was evidenced by expression of a constitutively active form of p59Fyn in Jurkat cells. Besides its effect on tyrosine phosphorylation events, thrombin also triggered a rapid and robust redistribution of PKCε and δ from the cytosol to the membrane. Expression of constitutively active and dominant negative PKCε demonstrates the pivotal role of this PKC isoform in ERKs activation by thrombin. These data are consistent with a model where thrombin induces ERK activation via both PKC-dependent and independent pathways, whereas p38 MAPK activation requires only PTKs. The PKC-independent pathway requires Src kinases other than p56Lck more likely p59Fyn, while the PKC-dependent mechanism depends on PKCε

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anderson NG, Maller JL, Tonks NK, Sturgill TW . 1990 Nature 343: 651–653

  • Autero M, Saharinen J, Pessa-Morikawa T, Soula-Rothhut M, Oetken C, Gassmann M, Baier BG, Uberall F, Bauer B, Fresser F, Wachter H, Grunicke H, Utermann G, Altman A, Baier G . 1996 Mol. Cell. Biol. 16: 1842–1850

  • Bjorkoy G, Perander M, Overvatn A, Johansen T . 1997 J. Biol. Chem. 272: 11557–11565

  • Branch DR, Mills GB . 1995 J. Immunol. 154: 3678–3685

  • Buday L, Downward J . 1993 Cell 73: 611–620

  • Burgering BM, Bos JL . 1995 Trends Biochem. Sci. 20: 18–22

  • Cai H, Smola U, Wixler V, Eisenmann TI, Diaz MM, Moscat J, Rapp U, Cooper GM . 1997 Mol. Cell. Biol. 17: 732–741

  • Chen Y.-H, Pouyssegur J, Courtneidge SA, Van Obbergen-Schilling E . 1994 J. Biol. Chem. 269: 27312–27377

  • Conway AM, Rakhit S, Pyne S, Pyne NJ . 1999 Biochem. J 171–177

  • Deckert M, Tartare-Deckert S, Hernandez J, Rottapel R, Altman A . 19998 Immunity 9: 595–605

  • Dery O, Corvera CU, Steinhoff M, Bunnett NW . 1998 Am. J. Physiol 1429–1452

  • Diaz MM, Lozano J, Municio MM, Berra E, Frutos S, Sanz L, Moscat J . 1994 J. Biol. Chem. 269: 31706–31710

  • Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J . 1996 Nature 383: 547–550

  • Dikic I, Schlessinger J . 1998 J. Biol. Chem. 269: 31706–31710

  • Genot EM, Parker PJ, Cantrell DA . 1995 J. Biol. Chem. 270: 9833–9839

  • Ghaffari TN, Bauer B, Villunger A, Baier BG, Altman A, Utermann G, Uberall F, Baier G . 1999 Eur. J. Immunol. 29: 132–142

  • Goldsmith MA, Weiss A . 1998 Proc. Natl. Acad. Sci. USA 84: 6879–6883

  • Gutkind JS . 1998 J. Biol. Chem. 273: 1839–1842

  • Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA . 1996 J. Biol. Chem. 271: 695–701

  • Joyce DE, Chen Y, Erger RA, Koretzky GA, Lentz SR . 1997 Blood 90: 1893–1901

  • Kampfer S, Hellbert K, Villunger A, Doppler W, Baier G, Grunicke HH, Uberall F . 1998 EMBO J. 17: 4046–4055

  • Kawakami Y, Yao L, Tashiro M, Gibson S, Mills GB, Kawakami T . 1995 J. Immunol. 155: 3556–3562

  • Luttrell LM, Daaka Y, Della RG, Lefkowitz RJ . 1997 J. Biol. Chem. 272: 31648–31656

  • Mari B, Guerin S, Maulon L, Belhacene N, Farahi Far D, Imbert V, Rossi B, Peyron JF, Auberger P . 1997 FASEB J. 11: 869–879

  • Mari B, Imbert V, Belhacene N, Farahi Far D, Peyron J-F, Pouyssegur J, Van Obberghen-Schilling E, Rossi B, Auberger P . 1994 J. Biol. Chem. 269: 8517–8523

  • Marshall CJ . 1995 Cell 80: 179–185

  • Maulon L, Guerin S, Ricci JE, Breittmayer JP, Auberger P . 1998 Blood 91: 4232–4241

  • Medema RH, de V Smits AM, van der Zon GC, Maassen JA, Bos JL . 1993 Mol. Cell. Biol. 13: 155–162

  • Morrison DK, Heidecker G, Rapp UR, Copeland TD . 1993 J. Biol. Chem. 268: 17309–17316

  • Nada S, Yagi T, Takeda H, Tokunaga T, Nakagawa H, Ikawa Y, Okada M, Aizawa S . 1993 Cell 73: 1125–1135

  • Ron D, Napolitano EW, Voronova A, Vasquez NJ, Roberts DN, Calio BL, Caothien RH, Pettiford SM, Wellik S, Mandac JB, Kauvar LM . 1999 J. Biol. Chem. 274: 19003–19010

  • Rossomando AJ, Payne DM, Weber MJ, Sturgill TW . 1989 Proc. Natl. Acad. Sci. USA 86: 6940–6943

  • Sadoshim J, Izumo S . 1996 EMBO J. 15: 775–787

  • Satoh K, Ozaki Y, Asazuma N, Yatomi Y, Ruomei Q, Kuroda K, Yang L, Kume S . 1996 Biochem. Biophys. Res. Commun. 225: 1084–1089

  • Song JS, Swann PG, Szallasi Z, Blank U, Blumberg PM, Rivera J . 1998 Oncogene 16: 3357–3368

  • Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF . 1994 Science 264: 1463–1467

  • Ueda Y, Hirai Si, Osada Si, Suzuki A, Mizuno K, Ohno S . 1996 J. Biol. Chem. 271: 23512–23519

  • Vu T-KH, Hung DT, Wheaton VI, Coughlin SR . 1991 Cell 64: 1057–1068

  • Wan Y, Kursaki T, Huang X-Y . 1996 Nature 380: 541–544

  • Wang XS, Diener K, Tan TH, Yao Z . 1998 Biochem. Biophys. Res. Commun. 253: 33–37

  • Weiss A, Littman DR . 1994 Cell 76: 263–274

  • Werlen G, Jacinto E, Xia Y, Karin M . 1998 EMBO J. 17: 3101–3111

  • Yao L, Kawakami Y, Kawakami T . 1994 Proc. Natl. Acad. Sci. USA 91: 9175–9179

Download references

Acknowledgements

This work was supported by INSERM, the University of Nice Sophia Antipolis (BQR), the Association pour la Recherche contre le Cancer (ARC grants 6684 and 9502) and the Ligue Nationale contre le Cancer (Equipe labellisée LNC). We thank Georges Bismuth for helpful suggestions. L Maulon is a fellowship from the Association pour la Recherche contre le Cancer.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maulon, L., Mari, B., Bertolotto, C. et al. Differential requirements for ERK1/2 and P38 MAPK activation by thrombin in T cells. Role of P59Fyn and PKCε. Oncogene 20, 1964–1972 (2001). https://doi.org/10.1038/sj.onc.1204266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204266

Keywords

This article is cited by

Search

Quick links