Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Review Article

The rapamycin-sensitive signal transduction pathway as a target for cancer therapy


The high frequency of mutations in cancer cells which result in altered cell cycle regulation and growth signal transduction, conferring a proliferative advantage, indicates that many of these aberrant mechanisms may be strategic targets for cancer therapy. The macrolide fungicide rapamycin, a natural product with potent antimicrobial, immunosuppressant, and anti-tumor properties, inhibits the translation of key mRNAs of proteins required for cell cycle progression from G1 to S phase. Rapamycin binds intracellularly to the immunophilin FK506 binding protein 12 (FKBP12), and the resultant complex inhibits the protein kinase activity of a protein kinase termed mammalian target of rapamycin (mTOR). The inhibition of mTOR, in turn, blocks signals to two separate downstream pathways which control the translation of specific mRNAs required for cell cycle traverse from G1 to S phase. Blocking mTOR affects the activity of the 40S ribosomal protein S6 kinase (p70s6k) and the function of the eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), leading to growth arrest in the the G1 phase of the cell cycle. In addition to its actions on p70s6k and 4E-BP1, rapamycin prevents cyclin-dependent kinase activation, inhibits retinoblastoma protein (pRb) phosphorylation, and accelerates the turnover of cyclin D1 that leads to a deficiency of active cdk4/cyclin D1 complexes, all of which can inhibit cell cycle traverse at the G1/S phase transition. Both rapamycin and CCI-779, an ester analog of rapamycin with improved pharmaceutical properties and aqueous solubility, have demonstrated impressive activity against a broad range of human cancers growing in tissue culture and in human tumor xenograft models, which has supported the development of compounds targeting rapamycin-sensitive signal-transduction pathways. CCI-779 has completed several phase I clinical evaluations and is currently undergoing broad disease-directed efficacy studies. The agent appears to be well tolerated at doses that have resulted in impressive anti-tumor activity in several types of refractory neoplasms. Important challenges during clinical development include the definition of a recommended dose range associated with optimal biological activity and maximal therapeutic indices, as well as the ability to predict which tumors will be sensitive or resistant to CCI-779.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2


  • Adjei AA, Erlichman C, Davis JN, Cutler DL, Sloan JA, Marks RS, Hanson LJ, Svingen PA, Atherton P, Bishop WR, Kirschmeier P and Kaufmann SH. . 2000 Cancer Res. 60: 1871–1877.

  • Baker H, Sidorowicz A, Sehgal SN and Vezina C. . 1978 J. Antibiot. (Tokyo) 31: 539–545.

  • Besson A, Robbins SM and Yong VW. . 1999 Eur. J. Biochem. 263: 605–611.

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS and Schreiber SL. . 1994 Nature 369: 756–758.

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence Jr JC and Abraham RT. . 1997 Science 277: 99–101.

  • Burgering BM and Coffer PJ. . 1995 Nature 376: 599–602.

  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R and Soltoff . 1991 Cell 64: 281–302.

  • Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS and Cantley LC. . 1990 J. Biol. Chem. 265: 19704–19711.

  • Casagrande F, Bacqueville D, Pillaire MJ, Malecaze F, Manenti S, Breton-Douillon M and Darbon JM. . 1998 FEBS Lett. 422: 385–390.

  • Chiu MI, Katz H and Berlin V. . 1994 Proc. Natl. Acad. Sci. USA 91: 12574–12578.

  • Chung J, Grammer TC, Lemon KP, Kazlauskas A and Blenis J. . 1994 Nature 370: 71–75.

  • Downward J. . 1998 Curr. Opin. Cell. Biol. 10: 262–267.

  • Eng CP, Sehgal SN and Vezina C. . 1984 J. Antibiot. (Tokyo) 37: 1231–1237.

  • Ferry D, Hammond L, Ranson M, Kris MG, Miller V, Murray P, Tullo A, Feyereislova S, Averbuch S and Rowinsky E. . 2000 Proc. Am.. Soc. Clin. Oncol. 19: 30.

  • Fruman DA, Wood MA, Gjertson CK, Katz HR, Burakoff SJ and Bierer BE. . 1995 Eur. J. Immunol. 25: 563–571.

  • Gelmon KA, Eisenhauer EA, Harris AL, Ratain MJ and Workman P. . 1999 J. Natl. Cancer Inst. 91: 1281–1287.

  • Gibbons JJ, Discafani C, Peterson R, Hernandez R, Skotnicki J and Frost J. . 2000 Proc. Am. Assoc. Cancer Res. 40: 301.

  • Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N and Hay N. . 1998 Genes Dev. 12: 502–513.

  • Grewe M, Gansauge F, Schmid RM, Adler G and Seufferlein T. . 1999 Cancer Res. 59: 3581–3587.

  • Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I and Avruch J. . 1997 J. Biol. Chem. 272: 26457–26463.

  • Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L and Ferrari S. . 1998 J. Biol. Chem. 273: 14424–14429.

  • Heitman J, Movva NR and Hall MN. . 1991 Science 253: 905–909.

  • Hidalgo M, Rowinsky E, Erlichman C, Drengler R, Marshall B, Adjei A, Hammond L, Speicher L, Galanis E, Edwards T, Boni J, Dukart G, Buckner J and Tolcher A. . 2000 Proc. Am. Soc. Clin. Onco. 19: 187.

  • Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, Abraham RT, Lawrence Jr JC and Houghton PJ. . 1998 Mol. Pharmacol. 54: 815–824.

  • Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L, Ashmun RA, Germain GS, Abraham RT and Houghton PJ. . 1999 Cancer Res. 59:: 886–894.

  • Hu L, Zaloudek C, Mills GB, Gray J and Jaffe RB. . 2000 Clin. Can. Res. 6: 880–886.

  • Hu Q, Klippel A, Muslin AJ, Fantl WJ and Williams LT. . 1995 Science 268: 100–102.

  • Kawamata S, Sakaida H, Hori T, Maeda M and Uchiyama T. . 1998 Blood 91: 561–569.

  • Koltin Y, Faucette L, Bergsma DJ, Levy MA, Cafferkey R, Koser PL, Johnson RK and Livi GP. . 1991 Mol. Cell. Biol. 11: 1718–1723.

  • Luo Y, Marx SO, Kiyokawa H, Koff A, Massague J and Marks AR. . 1996 Mol. Cell. Biol. 16: 6744–6751.

  • Morice WG, Wiederrecht G, Brunn GJ, Siekierka JJ and Abraham RT. . 1993 J. Biol. Chem. 268: 22737–22745.

  • Muthukkumar S, Ramesh TM and Bondada S. . 1995 Transplantation 60: 264–270.

  • Nave BT, Ouwens M, Withers DJ, Alessi DR and Shepherd PR. . 1999 Biochem. J. 344: 427–431.

  • Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR and Roberts JM. . 1994 Nature 372: 570–573.

  • Petritsch C, Woscholski R, Edelmann HM and Ballou LM. . 1995 J. Biol. Chem. 270: 26619–26625.

  • Raymond E, Alexander J, Depenbrock H, Mekhaldi S, Angevin E, Hanauske A, Baudin E, Escudier B, Frisch J, Boni J and Armand JP. . 2000 Proc. Am. Soc. Clin. Onco. 40: 187.

  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N and London IM. . 1995 J. Biol. Chem. 270: 21176–21180.

  • Rowinsky E, Windle J and Von Hoff DD. . 1999 J. Clin. Oncol. 17: 3631–3652.

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P and Snyder SH. . 1994 Cell 78: 35–43.

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G and Abraham R. . 1995 J. Biol. Chem. 270: 815–822.

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE and Abraham RT. . 1998 Cancer Res. 58: 4375–4382.

  • Sausville EA, Zaharevitz D, Gussio R, Meijer L, Louarn-Leost M, Kunick C, Schultz R, Lahusen T, Headlee D, Stinson S, Arbuck SG and Senderowicz A. . 1999 Pharmacol. Ther. 82: 285–292.

  • Scott PH, Brunn GJ, Kohn AD, Roth RA and Lawrence Jr JC. . 1998 Proc. Natl. Acad. Sci. USA 95: 7772–7777.

  • Sehgal SN, Baker H and Vezina C. . 1975 J. Antibiot. (Tokyo) 28: 727–732.

  • Sehgal SN. . 1995 Ther. Drug Monit. 17: 660–665.

  • Sekulic AH, Homme CC, Yin P, Otterness D, Karnitz LM and Abraham RT. . 2000 Cancer Res. 60: 3504–3514.

  • Senderowicz AM and Sausville EA. . 2000 J. Natl. Cancer Inst. 92: 376–387.

  • Seufferlein T and Rozengurt E. . 1996 Cancer Res. 56: 3895–3897.

  • Shantz LM and Pegg AE. . 1995 Cancer Res. 58: 2748–2753.

  • Shayesteeh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB and Gray JW. . 1999 Nat. Genet. 21: 99–102.

  • Sherr CJ. . 2000 Cancer Res. 60: 3689–3695.

  • Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG and Mills GB. . 1995 Cancer Res. 55: 1982–1988.

  • Sonenberg N and Gingras AC. . 1998 Curr. Opin. Cell Biol. 10: 268–275.

  • Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, Swedlund B, Hansen KL, Vinson VL, Gumpper KL, Ellis L, El-Naggar A, Frazier M, Jasser S, Langford LA, Lee J, Mills GB, Pershouse MA, Pollack RE, Tornos C, Troncoso P, Yung WK, Fujii G, Berson A and Steck PA. . 1997 Cancer Res. 57: 5221–5225.

  • Thomas JE, Venugopalan M, Galvin R, Wang Y, Bokoch GM and Vlahos CJ. . 1997 J. Cell Biochem. 64: 182–195.

  • Varticovski L, Harrison-Findik D, Keeler ML and Susa M. . 1994 Biochem. Biophys. Acta. 1226: 1–11.

  • Vezina C, Kudelski A and Sehal SN. . 1975 J. Antibiot. (Tokyo) 28: 721–726.

  • Vlahos CJ, Matter WF, Hui KY and Brown RF. . 1994 J. Biol. Chem. 269: 5241–5248.

  • Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ and Abraham RT. . 1995 Prog. Cell. Cycle Res. 1: 53–71.

  • Wu X, Senechal K, Neshat MS, Whang YE and Sawyers CL. . 1998 Proc. Natl. Acad. Sci. USA 95: 15587–15591.

  • Yatscoff RW and Aspeslet LJ. . 1998 Ther. Drug Monit. 20: 459–463.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hidalgo, M., Rowinsky, E. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19, 6680–6686 (2000).

Download citation

  • Issue Date:

  • DOI:


  • rapamycin
  • CCI-779
  • signal transduction
  • clinical development

This article is cited by


Quick links