Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

PRCC, the commonest TFE3 fusion partner in papillary renal carcinoma is associated with pre-mRNA splicing factors

Abstract

In papillary renal cell carcinomas the TFE3 transcription factor becomes fused to the PSF and NonO pre-mRNA splicing factors and most commonly to a protein of unknown function designated PRCC. In this study we have examined the ability of the resulting PRCC–TFE3 and NonO–TFE3 fusions to activate transcription from the plasminogen activator inhibitor-1 (PAI-1) promoter. The results show that only fusion to PRCC enhanced transcriptional activation, indicating that the ability to enhance the level of transcription from endogenous TFE3 promoters is not a consistent feature of TFE3 fusions. In investigations of the normal function of PRCC we observed that PRCC expressed as a green fluorescent fusion protein colocalizes within the nucleus with Sm pre-mRNA splicing factors. It was also found that endogenous PRCC is coimmunoprecipitated by antibodies that recognize a variety of pre-mRNA splicing factors including SC35, PRL1 and CDC5. Association with the cellular splicing machinery is therefore, a common feature of the proteins that become fused to TFE3 in papillary renal cell carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anglard P, Trahan E, Liu S, Latif F, Merino MJ, Lerman MI, Zbar B and Linehan WM. . 1992 Cancer Res. 52: 348–356.

  • Artandi SE, Merrell K, Avitahl N, Wong KK and Calame K. . 1995 Nucleic Acids. Res. 23: 3865–3871.

  • Bajou K. . 1998 Nat. Med. 4: 923–928.

  • Basu A, Dong B, Krainer AR and Howe CC. . 1997 Mol. Cell Biol. 17: 677–686.

  • Beckmann H, Su LK and Kadesch T. . 1990 Genes Dev. 4: 167–179.

  • Bernstein HS and Coughlin SR. . 1997 J. Biol. Chem. 272: 5833–5837.

  • Brody E and Ableson J. . 1985 Science 24: 963–967.

  • Carmeo-Fonseca M, Pepperkok R, Carvalho MT and Lamond AL. . 1992 J. Cell. Biol. 117: 1–14.

  • Chanas-Sacre G, Mazy-Servais C, Wattiez R, Pirard S, Rogister B, Patton JG, Belachew S, Malgrange B, Moonen G and Leprince P. . 1999 J. Neurosci. Res. 1: 62–73.

  • Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J and Cooper CS. . 1997 Oncogene 15: 2233–2239.

  • Davies RC, Clavio C, Bratt E, Larsson SH, Lamond AI and Hastie ND. . 1998 Genes Dev. 12: 3217–3225.

  • De Jong B, Molenaar IM, Leeuw JA, Idenberg VJ and Oosterhuis JW. . 1986 Cancer Genet. Cytogenet. 21: 165–169.

  • Dignam JD, Lebovitz RM and Roeder RG. . 1983 Nucleic Acids Res. 11: 1475–1489.

  • Dong B, Horowitz DS, Kobayashi R and Krainer AR. . 1993 Nucleic Acids Res. 21: 4085–4092.

  • Fu X-D. . 1995 RNA. 1: 663–680.

  • Fu, X-D and Maniatis T. . 1990 Nature 343: 437–441.

  • Grabowski PJ, Seiler SR and Sharp PA. . 1985 Cell 42: 345–353.

  • Groenen MA, Garcia E, Debeer P, Devriendt K, Fryns JP and Ven de Van. . 1996 Genomics 38: 141–148.

  • Groenen MA, Vanderlinden G, Devriendt K, Fryns JP and Ven de Van. . 1998 Genomics 49: 218–229.

  • Hallier M, Lerga A, Barnache S, Tavitian A and Moreau GF. . 1998 J. Biol. Chem. 273: 4838–4842.

  • Hallier M, Tavitian A and Moreau GF. . 1996 J. Biol. Chem. 271: 11177–11181.

  • Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA and Fisher DE. . 1994 Genes Dev. 8: 2770–2780.

  • Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA and Arnheiter H. . 1993 Cell 74: 395–404.

  • Hua X, Liu X, Ansari D and Lodish H. . 1998 Genes Dev. 12: 3084–3095.

  • Hua X, Miller ZA, Wu G, Shi Y and Lodish HF. . 1999 Proc. Natl. Acad. Sci. USA 96: 13130–13135.

  • Kramer A. . 1996 Annu. Rev. Biochem. 65: 367–409.

  • Kreivi J-P and Lamond AI. . 1996 Curr. Biol. 6: 802–804.

  • Little M, Holmes G and Walsh P. . 1999 Bioessays 21: 191–202.

  • McDonald WH, Ohi R, Smelkova N, Frendewey D and Gould KL. . 1999 Mol. Cell Biol. 19: 5352–5362.

  • Meloni AM, Dobbs RM, Pontes JE and Sandberg AA. . 1993 Cancer Genet. Cytogenet. 65: 1–6.

  • Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A and Mann M. . 1998 Nat. Genet. 20: 46–50.

  • O'Keefe R, Mayeda A, Sadowski C, Krainer A and Spector D. . 1994 J. Cell. Biol. 124: 249–260.

  • Patton JG, Porro EB, Galceran J, Tempst P and Nadal GB. . 1993 Genes Dev. 7: 393–406.

  • Pettersson I, Hinterberger M, Mimori T, Gottlieb E and Steitz JA. . 1984 J. Biol. Chem. 259: 5907–5914.

  • Reeves BR, Smith S, Fisher C, Warren W, Knight J, Martin C, Chan AM, Guesterson BA, Westbury G and Cooper CS. . 1989 Oncogene 4: 373–378.

  • Roman C, Matera AG, Cooper C, Artandi S, Blain S, Ward DC and Calame K. . 1992 Mol. Cell Biol. 12: 817–827.

  • Sambrook J, Fritsch EF and Maniatis T. . 1989 Cold spring Harbor Laboratory Press, Cold Spring Harbor, NY.

  • Shinozaki A, Arahata K and Tsukahara T. . 1999 Int. J. Biochem. Cell Biol. 31: 1279–1287.

  • Sidhar SK, Clark J, Gill S, Hamoudi R, Crew AJ, Gwilliam R, Ross M, Linehan WM, Birdsall S, Shipley J and Cooper CS. . 1996 Hum. Mol. Genet. 5: 1333–1338.

  • Thaete C, Brett D, Monaghan P, Whitehouse S, Rennie G, Rayner E, Cooper CS and Goodwin G. . 1999 Hum. Mol. Genet. 8: 585–591.

  • Tian G, Erman B, Ishii H, Gangopadhyay SS and Sen R. . 1999 Mol. Cell. Biol. 1: 2946–2957.

  • Vallet VS, Henrion AA, Bucchini D, Casado M, Raymondjean M, Kahn A and Vaulont S. . 1997 J. Biol. Chem. 272: 21944–21949.

  • Weterman MA, Wilbrink M and van Kessels A. . 1996 Proc. Natl. Acad. Sci. USA 93: 15294–15298.

  • Weterman MA, van Groningen JJ, Jansen A and van Kessel AG. . 2000 Oncogene 19: 69–74.

  • Yang YS, Hanke JH, Carayannopoulos L, Craft CM, Capra JD and Tucker PW. . 1993 Mol. Cell Biol. 13: 5593–5603.

Download references

Acknowledgements

AI Lamond and PM Ajuh are supported by the Wellcome Trust and AI Lamond is a Wellcome Trust Principal Research Fellow. YM Skalsky is funded by the Cancer Research Campaign. We also thank Dr Xianxin H for providing PE2 and PmE2 plasmids and Dr C Hill for providing SMAD3 plasmid, S Gill for cell lines and RNAs, L Trinkle-Mulcahy for helpful discussions, and particularly to J Clark for helpful discussions and assistance all along this work. We also thank all members of our laboratory Claudia Michela and Kammedea for technical assistance and Sally Townsand for typing the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skalsky, Y., Ajuh, P., Parker, C. et al. PRCC, the commonest TFE3 fusion partner in papillary renal carcinoma is associated with pre-mRNA splicing factors. Oncogene 20, 178–187 (2001). https://doi.org/10.1038/sj.onc.1204056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204056

Keywords

This article is cited by

Search

Quick links