Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity

Abstract

The activities of Src-family non-receptor tyrosine kinases are regulated by structural changes that alter the orientation of key residues within the catalytic domain. In this study, we investigate the effects of activation loop mutations on regulation of the lymphocyte-specific kinase Lck (p56lck). Substitution of 5–7 residues amino terminal to the conserved activation loop tyrosine (Y394) increases kinase activity and oncogenic potential regardless of regulatory C-terminal tail phosphorylation levels (Y505), while most mutations in the 13 residues carboxyl to Y394 decrease kinase activity. Phosphorylation of the C-terminal regulatory tail is carried out by the cytosolic tyrosine kinase Csk and we find that mutations upstream or downstream of Y394 or mutation of Y394 do not affect the level of Y505 phosphorylation. In addition, we report that mutations on either side of Y394 affect substrate specificity in vivo. We conclude that the high degree of conservation across the entire activation loop of Src-family kinases is critical for normal regulation of kinase activity and oncogenicity as well as substrate selection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abraham N and Veillette A. . 1990 Mol. Cell. Biol. 10: 5197–5206.

  • Amrein KE and Sefton BM. . 1988 Proc. Natl. Acad. Sci. USA 85: 4247–4251.

  • Bougeret C, Delaunay T, Romero F, Jullien P, Sabe H, Hanafusa H, Benarous R and Fischer S. . 1996 J. Biol. Chem. 271: 7465–7472.

  • Carrera AC, Alexandrov K and Roberts TM. . 1993 Proc. Natl. Acad. Sci. USA 90: 442–446.

  • Carrera AC, Borlado LR, Gonzalez-Garcia A, Roberts TM and Martinez AC. . 1995 Oncogene 10: 2379–2386.

  • Cartwright CA, Eckhart W, Simon S and Kaplan PL. . 1987 Cell 49: 83–91.

  • Cooper JA and MacAuley A. . 1988 Proc. Natl. Acad. Sci. USA 85: 4232–4236.

  • Eck MJ, Shoelson SE and Harrison S. . 1993 Nature 362: 87–91.

  • Gervais FG, Chow LML, Lee JM, Branton PE and Veillette A. . 1993 Mol. Cell. Biol. 13: 7112–7121.

  • Hofstra RMW, Landsvater RM, Cecchini I, Stulp RP, Stelwagen T, Luo Y, Paasini B, Hoppener JWM, van Amstel HKP, Romeo G, Lips CJM and Buys CHCM. . 1994 Nature 367: 375–376.

  • Hubbard SR. . 1997 EMBO J. 16: 5572–5581.

  • Hubbard SR, Wei L, Ellis L and Hendrickson WA. . 1994 Nature 372: 746–754.

  • Johnson LN, Noble MEM and Owen DJ. . 1996 Cell 85: 149–158.

  • Jullien P, Bougeret C, Camoin L, Bodeus M, Durand H, Disanto JP, Fischer S and Benarous R. . 1994 Eur. J. Biochem. 224: 589–596.

  • Kmiecik TE and Shalloway D. . 1987 Cell 49: 65–73.

  • Madhusudan, Trafny EA, Xuong N-H, Adams JA, Eyeck LFT, Taylor SS and Sowadski JM . 1994 Protein Sci. 3: 176–187.

  • Marth JD, Cooper JA, King CS, Ziegler SF, Tinker DA, Overell RW, Krebs EG and Perlmutter RM. . 1988 Mol. Cell. Biol. 8: 540–550.

  • Mohammadi M, Schlessinger J and Hubbard SR. . 1996 Cell 86: 577–587.

  • Osusky M, Taylor SJ and Shalloway D. . 1995 J. Biol. Chem. 270: 25729–25732.

  • Pear WS, Nolan GP, Scott ML and Baltimore D. . 1993 Proc. Nalt. Acad. Sci. USA 90: 8392–8396.

  • Piao X, Paulson R, Van der Geer P, Pawson T and Bernstein A. . 1996 Proc. Natl. Acad. Sci. USA 93: 14665–14669.

  • Piwnica-Worms H, Saunders KB, Roberts TM, Smith AE and Cheng SH. . 1987 Cell 49: 75–82.

  • Ruzzene M, James P, Brunati AM, Donella-Deana A and Pinna LA. . 1994 J. Biol. Chem. 269: 15885–15891.

  • Schindler T, Sicheri F, Pico A, Gazit A, Levitzki A and Kuriyan J. . 1999 Mol. Cell 3: 639–648.

  • Sicheri F, Moarefi I and Kuriyan J. . 1997 Nature 385: 602–607.

  • Sideras P and Smith CI. . 1995 Adv. Immun. 59: 135–223.

  • Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T, Ren R, Baltimore D, Ratnofsky S, Feldman RA and Cantley LC. . 1994 Mol. Cell. Biol. 14: 2777–2785.

  • Waksman G, Shoelson SE, Pant N, Cowburn D and Kuriyan J. . 1993 Cell 72: 779–790.

  • Weil R and Veillette A. . 1994 J. Biol. Chem. 269: 22830–22838.

  • Xu W, Doshi A, Lei M, Eck MJ and Harrison SC. . 1999 Mol. Cell 3: 629–638.

  • Xu W, Harrison SC and Eck M. . 1997 Nature 385: 595–602.

  • Yamaguchi H and Hendrickson W. . 1996 Nature 384: 484–489.

  • Zheng J, Knighton DR, Eyeck LFT, Karlsson R, Xuong N-H, Taylor SS and Sowadski JM. . 1993 Biochemistry 32: 2154–2161.

Download references

Acknowledgements

We are grateful to Chris Rudd for generously providing the polyclonal anti-Lck sera. We would also like to thank Toni Jun, Fred King, Paul Rose, Kathryn Campbell and Mike Eck for their helpful discussions during the completion of this work and Joanne Chan, Ole Gjoerup, Joan Brugge, and Sugata Sarkar for their critical reading of the manuscript. This work was supported by a National Institutes of Health Grant CA43803-10 (TM Roberts).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laham, L., Mukhopadhyay, N. & Roberts, T. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. Oncogene 19, 3961–3970 (2000). https://doi.org/10.1038/sj.onc.1203738

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203738

Keywords

This article is cited by

Search

Quick links