Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts

Abstract

Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation state depends on the competing action of GTPase Activating Proteins (GAP) and Guanine nucleotide Exchange Factors (GEF). A tryptophan residue (Trp1056 in CDC25Mm-GEF), conserved in all ras-specific GEFs identified so far has been previously shown to be essential for GEF activity. Its substitution with glutamic acid results in a catalytically inactive mutant, which is able to efficiently displace wild-type GEF from p21ras and to originate a stable ras/GEF binary complex due to the reduced affinity of the nucleotide-free ras/GEF complex for the incoming nucleotide. We show here that this ‘ras-sequestering property' can be utilized to attenuate ras signal transduction pathways in mouse fibroblasts transformed by oncogenic ras. In fact over-expression of the dominant negative GEFW1056E in stable transfected cells strongly reduces intracellular rasGTP levels in k-ras transformed fibroblasts. Accordingly, the transfected fibroblasts revert to wild-type phenotype on the basis of morphology, cell cycle and anchorage independent growth. The reversion of the transformed phenotype is accompanied by DNA endoreduplication. The possible use of dominant negative ras-specific GEFs as a tool to down-regulate tumor growth is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aftab DT, Kwan J and Martin GS . 1997 Proc Natl Acad Sci USA 94: 3028–3033

  • Anborgh PH, Qian X, Papageorge AG, Vass WC, DeClue JE and Lowy DR . 1999 Mol Cell Biol 19: 4611–4622

  • Barbacid M . 1987 Annu Rev Biochem 56: 779–827

  • Boguski MS and McCormick F . 1993 Nature 366: 643–654

  • Bollag G and McCormick F . 1991 Annu Rev Cell Biol 7: 601–632

  • Bos JL . 1988 Mutat Res 195: 255–271

  • Bos JL . 1990 Cancer Res 49: 4682–4689

  • Brambilla R, Gnesutta N, Minichiello L, White G, Roylance AJ, Herro CE, Ramsey M, Wolfer DP, Cestari V, Rossi-Arnaud C, Grant SGN, Chapman PF, Lipp HP, Sturani E and Klein R . 1997 Nature 390: 281–286

  • Buday L and Downward J . 1993 Cell 73: 611–620

  • Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ and Der CJ . 1998 Oncogene 17: 1395–1413

  • Chardin P, Camonis JH, Gale NW, Van Aelst L, Schlessinger J, Wigler MH and Bar-Sagi D . 1993 Science 260: 1338–1343

  • Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, Horner II J and DePinho RA . 1997 Genes Dev 11: 2822–2834

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhoul H, Horner II J, Cordon-Cardo C, Yancopoulos GD and DePinho RA . 1999 Nature 400: 468–472

  • Dolbeare F, Gratzner H, Pallavicini M, Gray JW . 1983 Proc Natl Acad Sci USA 80: 5573–5577

  • Downward J . 1997 Curr Biol 7: R258–R260

  • Dulic V, Stein GH, Far DF and Reed SI . 1998 Mol Cell Biol 18: 546–557

  • Egan SE, Giddins BW, Brooks MW, Buday L, Sizeland AM and Weinberg RA . 1993 Nature 363: 45–51

  • Feig LA . 1994 Curr Opin Cell Biol 6: 204–211

  • Giglione C and Parmeggiani A . 1998 J Biol Chem 273: 34737–34744

  • Guerrero C, Rojas JM, Chedid M, Esteban LM, Zimonjic DB, Popescu NC, Font de Mora J and Santos E . 1996 Oncogene 12: 1097–1107

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW and Wienberg RA . 1999 Nature 400: 464–468

  • Kerkhoff E and Rapp UR . 1998 Oncogene 17: 1457–1462

  • Laemmli UK . 1970 Nature 277: 680–685

  • Levitzky A . 1996 Curr Opin Cell Biol 8: 239–244

  • Levitzky A . 1997 Medical Oncology 14: 83–89

  • Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B and Schlessinger J . 1993 Nature 363: 85–88

  • Lowy DR and Willumsen BM . 1993 Annu Rev Biochem 62: 851–891

  • Martegani E, Vanoni M, Zippel R, Coccetti P, Brambilla R, Ferrari C, Sturani E and Alberghina L . 1992 EMBO J 11: 2151–2157

  • Mathiesen I . 1999 Gene Therapy 6: 508–514

  • Mattingly RR and Macara IG . 1996 Nature 382: 268–272

  • Niculescu AB III, Chen X, Smeets M, Hengst L, Prives C and Reed SI . 1998 Mol Cell Biol 18: 629–643

  • Park W, Mosteller RD and Broek D . 1997 Oncogene 14: 831–836

  • Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA and Ewen ME . 1997 Nature 386: 177–181

  • Plattner R, Anderson MJ, Sato KY, Fasching CL, Der CJ and Stanbridge EJ . 1996 Proc Natl Acad Sci USA 93: 6665–6670

  • Pulciani S, Santos E, Long LK, Sorrentino V, and Barbacid D . 1985 Mol Cell Biol 5: 2836–2841

  • Schweighoffer F, Faure M, Fath I, Chevalier-Multon MC, Apiou F, Dutrillaux B, Sturani E, Jacquet M and Toque B . 1993 Oncogene 8: 1477–1485

  • Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW . 1997 Cell 88: 593–602

  • Shou C, Farnsworth CL, Neel BG and Feig LA . 1992 Nature 358: 351–354

  • Sturani E, Abbondio A, Branduardi P, Ferrari C, Zippel R, Martegani E, Vanoni M and Denis-Donini S . 1997 Exp Cell Res 235: 117–123

  • Taylor SJ and Shalloway D . 1996 Current Biology 6: 1621–1627

  • Thomas G and Hall MN . 1997 Curr Opin Cell Biol 9: 782–787

  • van Biesen T, Hawes BE, Luttrell DK, Krueger KM, Touhara K, Porfiri E, Sakaue M, Luttrel LM and Lefkowitz RJ . 1995 Nature 376: 781–784

  • Vanoni M, Bertini R, Sacco E, Fontanella L, Rieppi M, Colombo S, Martegani E, Carrera V, Moroni A, Bizzarri C, Sabbatini V, Cattozzo M, Colagrande A and Alberghina L . 1999 J Biol Chem 274: 36656–36662

  • Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B and Williams J . 1997 Nature Med 3: 1034–1036

  • Wei W, Das B, Park W and Broek D . 1994 Gene 151: 279–284

  • Wei W, Schreiber SS, Baudry M, Tocco G and Broek D . 1993 Mol Brain Res 19: 339–344

  • Zippel R, De Maddalena C, Porro G, Modena D and Vanoni M . 1994 Int J Oncol 4: 175–179

  • Zippel R, Orecchia S, Sturani E and Martegani E . 1996 Oncogene 12: 2697–2703

  • Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL and Der CJ . 1998 Oncogene 17: 1415–1438

Download references

Acknowledgements

The authors wish to thank M Pierotti for the gift of 226.4.1 cells and Fred Wittinghofer for the gift of the plasmid encoding the GST–RBD fusion. This work has been supported by grants from Dompé SpA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossù, P., Vanoni, M., Wanke, V. et al. A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Oncogene 19, 2147–2154 (2000). https://doi.org/10.1038/sj.onc.1203539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203539

Keywords

This article is cited by

Search

Quick links