Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses

Abstract

Eph receptor tyrosine kinases play key roles in pattern formation during embryonic development, but little is known about the mechanisms by which they elicit specific biological responses in cells. Here, we investigate the role of tyrosines 605 and 611 in the juxtamembrane region of EphB2, because they are conserved Eph receptor autophosphorylation sites and demonstrated binding sites for the SH2 domains of multiple signaling proteins. Mutation of tyrosines 605 and 611 to phenylalanine impaired EphB2 kinase activity, complicating analysis of their function as SH2 domain binding sites and their contribution to EphB2-mediated signaling. In contrast, mutation to the negatively charged glutamic acid disrupted SH2 domain binding without reducing EphB2 kinase activity. By using a panel of EphB2 mutants, we found that kinase activity is required for the changes in cell-matrix and cell–cell adhesion, cytoskeletal organization, and activation of mitogen-activated protein (MAP) kinases elicited by EphB2 in transiently transfected cells. Instead, the two juxtamembrane SH2 domain binding sites were dispensable for these effects. These results suggest that phosphorylation of tyrosines 605 and 611 is critical for EphB2-mediated cellular responses because it regulates EphB2 kinase activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams JC . 1995 J Cell Sci 108: 1977–1990.

  • Adams JC . 1997 Mol Biol Cell 8: 2345–2363.

  • Boguski MS and McCormick F . 1993 Nature 366: 643–654.

  • Bruckner K and Klein R . 1998 Curr Opin Neurobiol 8: 375–382.

  • Buchert M, Schneider S, Meskenaite V, Adams MT, Canaani E, Baechi T, Moelling K and Hovens CM . 1999 J Cell Biol 2: 361–371.

  • Cavigelli M, Dolfi F, Claret FX and Karin M . 1995 EMBO J 14: 5957–5964.

  • Courtneidge SA, Kypta RM, Cooper JA and Kazlauskas A . 1991 Cell Growth Differ 2: 483–486.

  • Courtneidge SA, Dhand R, Pilat D, Twamley GM, Waterfield MD and Roussel MF . 1993 EMBO J 12: 943–950.

  • Davis RJ . 1988 J Biol Chem 263: 9462–9469.

  • Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M and Yancopoulos GD . 1994 Science 266: 816–819.

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M and Davis RJ . 1994 Cell 76: 1025–1037.

  • Drescher U . 1997 Curr Biol 7: R799–R807

  • Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M and Bonhoeffer F . 1995 Cell 82: 359–370.

  • Ellis C, Kasmi F, Ganju P, Walls E, Panayotou G and Reith AD . 1996 Oncogene 12: 1727–1736.

  • Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW and Williams LT . 1991 Mol Cell Biol 11: 1125–1132.

  • Fantl WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F and Williams LT . 1992 Cell 69: 413–423.

  • Flanagan JG and Vanderhaeghen P . 1998 Annu Rev Neurosci 21: 309–345.

  • Gandino L, Longati P, Medico E, Prat M and Comoglio PM . 1994 Mol Cell Biol 269: 1815–1820.

  • Giasson BI and Mushynski WE . 1996 Mol Cell Biol 271: 30404–30409.

  • Giasson BI and Mushynski WE . 1997 J Neurosci 17: 9466–9472.

  • Hock B, Bohme B, Karn T, Feller S, Rubsamen-Waigmann H and Strebhardt K . 1998a Oncogene 17: 255–260.

  • Hock B, Bohme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, Holland S, Pawson T, Rubsamen-Waigmann H and Strebhardt K . 1998b Proc Nat Acad Sci USA 95: 9779–9784.

  • Holash JA and Pasquale EB . 1995 Devel Biol 172: 683–693.

  • Holash JA, Soans C, Chong LD, Shao H, Dixit VM and Pasquale EB . 1997 Devel Biol 182: 256–269.

  • Holland SJ, Gale NW, Gish GD, Roth RA, Zhou SY, Cantley LC, Henkemeyer M, Yancopoulos GD and Pawson T . 1997 EMBO J 16: 3877–3888.

  • Huang W and Erikson RL . 1994 Proc Nat Acad Sci USA 91: 8960–8963.

  • Hubbard SR . 1997 EMBO J 16: 5572–5581.

  • Hubbard SR, Mohammadi M and Schlessinger J . 1998 J Biol Chem 273: 11987–11990.

  • Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA and Ginsberg MH . 1997 Cell 88: 521–530.

  • Kalo MS, and Pasquale EB . 1999 Biochemistry 38: 14396–14408.

  • Kaufman RJ, Davies MV, Pathak VK and Hershey JW . 1989 Mol Cell Biol 9: 946–958.

  • Kundra V, Escobedo JA, Kazlauskas A, Kim HK, Rhee SG, Williams LT and Zetter BR . 1994 Nature 367: 474–476.

  • Lauffenburger DA and Horwitz AF . 1996 Cell 84: 359–369.

  • Lin XH, Grako KA, Burg MA and Stallcup WB . 1996 Mol Biol Cell 7: 1977–1993.

  • Luo L, Jan LY and Jan YN . 1997 Curr Opin Neurobiol 7: 81–86.

  • Mackay DJ, Nobes CD and Hall A . 1995 Trends Neurosci 18: 496–501.

  • Meima L, Kljavin IJ, Moran P, Shih A, Winslow JW and Caras IW . 1997a Eur J Neurosci 9: 177–188.

  • Meima L, Moran P, Matthews W and Caras IW . 1997b Mol Cell Neurosci 9: 314–328.

  • Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL and Karin M . 1994 Science 266: 1719–1723.

  • Mitchison TJ and Cramer LP . 1996 Cell 84: 371–379.

  • Mori S, Ronnstrand L, Yokote K, Engstrom A, Courtneidge SA, Claesson-Welsh L and Heldin CH . 1993 EMBO J 12: 2257–2264.

  • Myles GM, Brandt CS, Carlberg K and Rohrschneider LR . 1994 Mol Cell Biol 14: 4843–4854.

  • Nakamoto M, Cheng HJ, Friedman GC, McLaughlin T, Hansen MJ, Yoon CH, O'Leary DD and Flanagan JG . 1996 Cell 86: 755–766.

  • Pandey A, Lazar DF, Saltiel AR and Dixit VM . 1994 J Biol Chem 269: 30154–30157.

  • Pasquale EB . 1991 Cell Regulation 2: 523–534.

  • Pasquale EB . 1997 Curr Opin Cell Biol 9: 608–615.

  • Pawson T and Scott JD . 1997 Science 278: 2075–2080.

  • Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del Rosario M, Mirda D and Williams LT . 1992 Nature 358: 678–681.

  • Potempa S and Ridley AJ . 1998 Mol Biol Cell 9: 2185–2200.

  • Quilliam LA, Khosravi-Far R, Huff SY and Der CJ . 1995 Bioessays 17: 395–404.

  • Reszka AA, Seger R, Diltz CD, Krebs EG and Fischer EH . 1995 Proc Nat Acad Sci USA 92: 8881–8885.

  • Shao H, Lou L, Pandey A, Pasquale EB and Dixit VM . 1994 J Biol Chem 269: 26606–26609.

  • Spivak-Kroizman T, Mohammadi M, Hu P, Jaye M, Schlessinger J and Lax I . 1994 J Biol Chem 269: 14419–14423.

  • Stein EDP, Cerretti DP and Daniel TO . 1996 J Biol Chem 271: 23588–23593.

  • Stein E, Huynh-Do U, Lane AA, Cerretti DP and Daniel TO . 1998a J Biol Chem 273: 1303–1308.

  • Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL and Daniel TO . 1998b Gen Dev 12: 667–678.

  • Stephens RM, Loeb DM, Copeland TD, Pawson T, Greene LA and Kaplan DR . 1994 Neuron 12: 691–705.

  • Tapon N and Hall A . 1997 Curr Opin Cell Biol 9: 86–92.

  • Thomas SM, Soriano P and Imamoto A . 1995 Nature 376: 267–271.

  • Thorsness PE and Koshland Jr DE . 1987 J Biol Chem 262: 10422–10425.

  • Torres R, Finestein BL, Dong H, Standinger J, Olson EN, Huganin RL, Bredt DS, Gale NW and Yancopoulos D . 1998 Neuron 21: 1453–1463.

  • Treisman R . 1996 Curr Opin Cell Biol 8: 205–215.

  • van der Geer P, Hunter T and Lindberg RA . 1994 Annu Rev Cell Biol 10: 251–337.

  • Veeranna, Amin, ND, Ahn, NG, Jaffe H, Winters CA, Grant P and Pant HC . 1998 J Neurosci 18: 4008–4021.

  • Waldmann R, Hanson PI and Schulman H . 1990 Biochemistry 29: 1679–1684.

  • Wang HU and Anderson DJ . 1997 Neuron 18: 383–396.

  • Wittekind M, Reizer J, Deutscher J, Saier MH and Klevit RE . 1989 Biochemistry 28: 9908–9912.

  • Yamaguchi H and Hendrickson WA . 1996 Nature 384: 484–489.

  • Yamashiro S, Yamakita Y, Ono S and Matsumura F . 1998 Mol Biol Cell 9: 993–1006.

  • Zhang Z, Vuori K, Wang H, Reed JC and Ruoslahti E . 1996 Cell 85: 61–69.

  • Zisch AH and Pasquale EB . 1997 Cell Tissue Res 290: 217–226.

  • Zisch AH, Stallcup WB, Chong LD, Dahlin-Huppe K, Voshol J, Schachner M and Pasquale EB . 1997 J Neurosci Res 47: 655–665.

  • Zisch AH, Kalo MS, Chong LD and Pasquale EB . 1998 Oncogene 16: 2657–2670.

  • Zou JX, Wang B, Zisch AH, Pasquale EB and Ruoslahti E . Proc Nat Acad Sci USA in press

Download references

Acknowledgements

The authors thank Kristiina Vuori and Fabrizio Dolfi for help with the in vitro MAP kinase assays and for the pGEX-Crk construct, Sheila Thomas for the Src-deficient cells, and Vincent Dodelet for the LexA:EphB2Y611E plasmid. This work was supported by NIH grants HD26351 and HD25938 and a grant from the March of Dimes Birth Defects Foundation (EB Pasquale). AH Zisch was supported by FWF Austria and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zisch, A., Pazzagli, C., Freeman, A. et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 19, 177–187 (2000). https://doi.org/10.1038/sj.onc.1203304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203304

Keywords

This article is cited by

Search

Quick links