Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects

Abstract

While 25% of human cancers harbor oncogenic Ras mutations, such mutations are not found in astrocytomas. We have previously demonstrated that the activation of receptor tyrosine kinases expressed by malignant human astrocytoma cells and specimens results in functional upregulation of the Ras signalling pathway and increased levels of activated Ras•GTP. Farnesyl transferase inhibitors (FTIs) are promising anti-cancer agents in early clinical trials, which may exert their effect through pharmacological inhibition of the Ras signalling pathway. In this study we establish the anti-tumorigenic properties of the FTI L-744,832 against a panel of malignant human astrocytoma cell lines. Furthermore, we demonstrate the multiple mechanisms by which L-744,832 exerts its effect. L-744,832 demonstrates both cytostatic and cytotoxic effects on astrocytoma cells, and cells expressing a truncated constitutively phosphorylated Epidermal Growth Factor Receptor common in high-grade astrocytomas (EGFRvIII/p140EGF-R) demonstrate increased sensitivity to the agent. L-744,832 is capable of inducing apoptosis in astrocytoma cells under anchorage-dependent conditions; this process occurs in a p53-independent manner and is associated with increased expression of Bax and Bak. L-744,832 also induces cell cycle arrest at both the G1/M and G2/S checkpoints; this process is also independent of p53 mutational status. Cell cycle arrest in drug-treated cells can be accompanied by induction of p21WAF1/CIP1, but this induction is not necessary for the cell cycle inhibitory effects, nor is it dependent on functional p53. Finally, angiogenesis in astrocytomas has been shown to be dependent on secretion of Vascular Endothelial Growth Factor (VEGF) by tumour cells, particularly under hypoxic conditions. L-744,832 potently inhibits the secretion of VEGF under hypoxic conditions. These combinations of mechanisms suggest that these tumours, despite the absence of oncogenic Ras mutations, will be amenable to growth inhibition by FTIs, through a combination of anti-proliferative, pro-apoptotic, and anti-angiogenic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Asano M, Yukita A, Matsumoto T, Kondo S and Suzuki H. . 1995 Cancer Res. 55: 5296–5301.

  • Barbacid M. . 1987 Annu. Rev. Biochem. 56: 779–827.

  • Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE, Kpester SK, Troyer DA, Bearss DJ, Conner MW, Gibbs JB, Hamilton K, Koblan KS, Mosser SD, O'Neill TJ, Schaber MD, Senderak ET, Windle JJ, Oliff A and Kohl NE. . 1998 Mol. Cell Biol. 18: 85–92.

  • Bos JL. . 1989 Cancer Res. 49: 4682–4689.

  • Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM and Sturgill TW. . 1992 Science 257: 1404–1407.

  • Downward J. . 1992 Curr. Opin. Genet. Dev. 2: 13–18.

  • Du W, Lebowitz PF and Prendergast GC. . 1999 Mol. Cell. Biol. 19: 1831–1840.

  • Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP and James CD. . 1994 Oncogene 9: 2313–2320.

  • Feig LA and Cooper GM. . 1988 Mol. Cell Biol. 8: 3235–3243.

  • Feldkamp MM, Lau N, Rak J, Kerbel RS and Guha A. . 1999 Int. J. Cancer 81: 118–124.

  • Finkenzeller G, Technau A and Marmé D. . 1995 Biochem. Biophys. Res. Commun. 208: 432–439.

  • Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA and Ali IU. . 1992 Cancer Res. 52: 4550–4553.

  • Gavrieli Y, Sherman Y and Ben-Sasson SA. . 1992 J. Cell Biol. 119: 493–501.

  • Gibbs JB, Oliff A and Kohl NE. . 1994 Cell 77: 175–178.

  • Goldberg MA and Schneider TJ. . 1994 J. Biol. Chem. 269: 4355–4359.

  • Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, Steck KD, Levin VA and Yung WKA. . 1996 Cancer Res. 56: 694–699.

  • Goodwin CJ, Holt SJ, Downes S and Marshall NJ. . 1995 J. Immunol. Methods 179: 95–103.

  • Gross A, Jockel J, Wei MC and Korsmeyer SJ. . 1998 EMBO J. 17: 3878–3885.

  • Grugel S, Finkenzeller G, Weindel K, Barleon B and Marmé D. . 1995 J. Biol. Chem. 270: 25915–25919.

  • Guha A, Dashner K, Black PM, Wagner JA and Stiles CD. . 1995a Int. J. Cancer 60: 168–173.

  • Guha A, Feldkamp MM, Lau N, Boss G and Pawson A. . 1997 Oncogene 15: 2755–2765.

  • Guha A, Gowacka D, Carrol R, Dashner K, Black PM and Stiles CD. . 1995b J. Neurol. Neurosurg. Psychiatry 58: 711–714.

  • Gutmann DH, Mahadeo DK, Giordano M, Silbergeld D and Guha A. . 1996 Oncogene 12: 2121–2127.

  • Hancock JF, Paterson H and Marshall CJ. . 1990 Cell 63: 133–139.

  • Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P and Marshall CJ. . 1992 Cell 71: 335–342.

  • Izawa I, Tamaki N and Saya H. . 1996 FEBS Lett. 382: 53–59.

  • James G, Goldstein JL and Brown MS. . 1996 Proc. Natl. Acad. Sci. USA 93: 4454–4458.

  • Knudson CM and Korsmeyer SJ. . 1997 Nat. Genetics 16: 358–363.

  • Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A and Gibbs JB. . 1993 Science 260: 1934–1937.

  • Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, Giuliani E, Gomez RP, Graham SL, Hamilton K, Handt LK, Hartman GD, Koblan KS, Kral AM, Miller PJ, Mosser SD, Oneal TJ, Randes E, Schaber MD, Gibbs JB and Oliff A. . 1995 Nat. Med. 1: 792–797.

  • Kohl NE, Wilson FR, Mosser SD, Giuliani E, deSolms SJ, Conner MW, Anthony NJ, Holtz WJ, Gomez RP, Lee T-J, Smith RL, Graham SL, Hartman GD, Gibbs JB and Oliff A. . 1994 Proc. Natl. Acad. Sci. USA 91: 9141–9145.

  • Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp VR and Avruch J. . 1992 Nature 358: 417–421.

  • Law BK, Norgaard P, Gnudi L, Kahn BB, Poulson HS and Moses HL. . 1999 J. Biol. Chem. 274: 4743–4748.

  • Lebowitz PF, Casey PJ, Prendergast GC and Thissen JA. . 1997a J. Biol. Chem. 272: 15591–15594.

  • Lebowitz PF, Davide JP and Prendergast GC. . 1995 Mol. Cell. Biol. 15: 6613–6622.

  • Lebowitz PF, Sakamuro D and Prendergast GC. . 1997b Cancer Res. 57: 708–713.

  • Lerner EC, Qian Y, Blaskovich MA, Fossum RD, Vogt A, Sun J, Cox AD, Der CJ, Hamilton AD and Sebti SM. . 1995a J. Biol. Chem. 270: 26802–26806.

  • Lerner EC, Qian Y, Hamilton AD and Sebti SM. . 1995b J. Biol. Chem. 270: 26770–26773.

  • Levy AP, Levy NS and Goldberg MA. . 1996 J. Biol. Chem. 271: 2746–2753.

  • Libermann TA, Razon N, Bantal AD, Yarden Y, Schlessinger J and Soreq H. . 1984 Cancer Res. 44: 753–760.

  • Manne V, Yan N, Carboni JM, Tuomari AV, Ricca CS, Brown JG, Andahazy ML, Schmidt RJ, Patel D, Zahler R, Weinmann R, Der CJ, Cox AD, Hunt JT, Gordon EM, Barbacid M and Seizinger BR. . 1995 Oncogene 10: 1763–1779.

  • Marshall CJ. . 1995 Cell. 80: 179–185.

  • Melnyk O, Shuman MA and Kim KJ. . 1996 Cancer Res. 56: 921–924.

  • Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A and Strawn LM. . 1996 Cancer Res. 56: 1615–1620.

  • Miyake M, Mizutani S, Koide H and Kaziro Y. . 1996 FEBS Lett. 378: 15–18.

  • Nagasu T, Yoshimatsu K, Rowell C, Lewis MD and Garcia AM. . 1995 Cancer Res. 55: 5310–5314.

  • Nistér M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, Schlessinger J and Westermark B. . 1988 Cancer Res. 48: 3910–3918.

  • Norgaard P, Law B, Joseph H, Page DL, Shyr Y, Mays D, Pietenpol JA, Kohl NE, Oliff A, Coffey Jr, RJ, Poulsen HS and Moses HL. . 1999 Clin. Cancer Res. 5: 35–42.

  • Olson MF, Paterson HF and Marshall CJ. . 1998 Nature 394: 295–299.

  • Plate KH, Breier G, Welch HA and Risau W. . 1992 Nature 359: 845–848.

  • Prendergast GC, Davide JP, deSolms SJ, Giuliani EA, Graham SL, Gibbs JB, Oliff A and Kohl NE. . 1994 Mol. Cell. Biol. 14: 4193–4202.

  • Prendergast GC and Gibbs JB. . 1993 Adv. Cancer Res. 62: 19–64.

  • Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF and Der CJ. . 1995 Oncogene 10: 2289–2296.

  • Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T and Kerbel R. . 1995 Cancer Res. 55: 4575–4580.

  • Ridley AJ, Paterson HF, Johnston CL, Dickmann D and Hall A. . 1992 Cell 70: 401–410.

  • Rozakis-Adcock M, Fernley R, Wade J, Pawson T and Bowtell D. . 1993 Nature 363: 83–85.

  • Saleh M, Stacker SA and Wilks AF. . 1996 Cancer Res. 56: 393–401.

  • Scatena CD, Stewart ZA, Mays D, Tang LJ, Keefer CJ, Leach SD and Pietenpol JA. . 1998 J. Biol. Chem. 273: 30777–30784.

  • Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A and Rosen N. . 1995 Cancer Res. 55: 5302–5309.

  • Sepp-Lorenzino L and Rosen N. . 1998 J. Biol. Chem. 273: 20243–20251.

  • Shamah SM, Stiles CD and Guha A. . 1993 Mol. Cell. Biol. 13: 7203–7212.

  • Smith MR, DeGudicibus SJ and Stacey DW. . 1986 Nature 320: 540–543.

  • Steck PA, Lee P, Hung MC and Yung WK. . 1988 Cancer Res. 48: 5433–5439.

  • Sugawa N, Ekstrand AJ, James CD and Collins VP. . 1990 Proc. Natl. Acad. Sci. USA 87: 8602–8606.

  • Tuzi NL, Uenter DJ, Kumar S, Staddon SL, Lemoine NR and Gullick WJ. . 1991 Br. J. Cancer 63: 227–233.

  • Vogt A, Qian Y, McGuire TF, Hamilton AD and Sebti SM. . 1996 Oncogene 13: 1991–1999.

  • Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR and Pai JK. . 1997 J. Biol. Chem. 272: 14459–14464.

  • Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS and Vogelstein B. . 1992 Proc. Natl. Acad. Sci. USA 89: 2965–2969.

  • Xu GF, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R and Weiss R. . 1990 Cell 62: 599–608.

  • Zhang FL, Kirschmeier P, Carr D, James L, Bond RW, Wang L, Patton R, Windsor WT, Syto R, Zhang R and Bishop WR. . 1997 J. Biol. Chem. 272: 10232–10239.

  • Zimmerman H. . 1969 Ann. NY Acad. Sci. 159: 337–359.

Download references

Acknowledgements

The authors wish to acknowledge the help of Janusz Rak and Robert Kerbel in the design of experiments assessing the secretion of VEGF by these cells. Allen Oliff (Merck Research Laboratories) provided the farnesyl transferase inhibitor L-744,832. FACS analysis was carried out with the help of Juliet Shannon in the FACS facility at the Princess Margaret Hospital/Ontario Cancer Institute. Immunocytochemistry was performed with assistance from Luba Roncari. Northen blotting for VEGF mRNA was performed by Hao Ding and Xiaoli Wu. This study was supported by an operating grant from the National Cancer Institute of Canada (NCIC). MM Feldkamp is supported by a Research Fellowship of the NCIC, provided in part by funds from the Terry Fox Run. A Guha is supported by a Clinician Scientist Award from the Medical Research Council of Canada.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldkamp, M., Lau, N. & Guha, A. Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects. Oncogene 18, 7514–7526 (1999). https://doi.org/10.1038/sj.onc.1203105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203105

Keywords

This article is cited by

Search

Quick links