Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Grb2 binding to the different isoforms of Ret tyrosine kinase

Abstract

The RET proto-oncogene encodes two isoforms of a receptor tyrosine kinase which plays a role in neural crest and kidney development. Ret ligands have been recently identified as the neuron survival factor GDNF (Glial-Derived Neurotrophic Factor) and Neurturin. Somatic rearrangements of RET, designated RET/PTCs, have been frequently detected in papillary thyroid carcinomas. In addition, distinct germ-line mutations of RET gene have been associated with the inherited cancer syndromes MEN (Multiple Endocrine Neoplasia) 2A, 2B and FMTC (Familial Medullar Thyroid Carcinomas) as well as with the congenital megacolon or Hirschsprung's disease, thus enlightening a significant role of this receptor gene in diverse human pathologic conditions. In this study, by performing classical inhibition experiments using synthetic phosphopeptides and by site-directed mutagenesis of the putative docking site, we have determined that for Grb2 the latter is provided by the tyrosine 620 of Ret/ptc2 long isoform (corresponding to Tyr 1096 on proto-Ret). However, in intact cells, the interaction of Grb2 with the two short and long Ret isoforms expressed separately is of similar strength, thus suggesting that Ret short isoform interaction with Grb2 could be mediated not only by Shc but also by a molecule that binds preferentially to this isoform. This possibility is supported by the evidence that the mutant Ret/ptc2Y620F long isoform displays a weak coimmunoprecipitation with Grb2 and that this mutant, lacking the docking site for Grb2 but owing all the others phosphotyrosines, surprisingly displays a reduced transforming activity compared to that of the two WTs oncogenes. We thus conclude that in intact cells both Ret isoforms bind to Grb2, although with different modalities. In addition, the present results are in agreement with the possibility that different signal transduction pathways are associated with the two isoforms of Ret.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberti, L., Borrello, M., Ghizzoni, S. et al. Grb2 binding to the different isoforms of Ret tyrosine kinase. Oncogene 17, 1079–1087 (1998). https://doi.org/10.1038/sj.onc.1202046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202046

Keywords

This article is cited by

Search

Quick links