Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The SH2-containing adapter protein GRB10 interacts with BCR-ABL

Abstract

Bcr-Abl is an oncogenic tyrosine kinase expressed in tumor cells of CML and a subset of ALL which in its unregulated and activated state is thought to cause cell transformation and leukemia. Bcr-Abl contains several autophosphorylation sites which serve as potential docking sites for SH2-containing signaling molecules. Mutational analysis has indicated that these autophosphorylation sites play a critical role in the transforming capability of Bcr-Abl. It has been shown that the SH2-containing adapter protein Grb2 binds to the autophosphorylation site Tyr(p)177 whereby it couples Bcr-Abl to the Ras pathway. The biological consequences of this interaction, however, are presently unclear. A Tyr177-mutated Bcr-Abl which lacks the ability to interact with the Grb2-SH2 domain still transforms myeloid cells and generates tumors in nude mice. We performed a yeast two-hybrid screen to identify signaling proteins which bind to distinct Bcr-Abl autophosphorylation sites. Autophosphorylation of Bcr-Abl in yeast was accomplished by using the DNA binding protein LexA which permits dimerization and crossphosphorylation of the fused bait. Using a LexA-Bcr-Abl full length fusion protein as bait, we identified several SH2-containing proteins. Among them we confirmed molecules already shown by others to interact with Bcr-Abl, in vivo, including Grb2, PI-3-kinase and Crk indicating that dimerization in yeast leads to autophosphorylation of tyrosine residues crucial for Bcr-Abl signaling in vivo. More importantly, we identified the SH2-containing protein Grb10 as a new binding partner for Bcr-Abl. This binding occurs in a phosphotyrosine-dependent manner at Bcr sites of Bcr-Abl. Both Abl and Bcr alone, as well as a kinase-defective Bcr-Abl, failed to interact with Grb10 in yeast. Mutational analysis uncovered a new SH2 binding site in Bcr-Abl located between Bcr aa242-446, which is different from the Grb2 binding site. Binding could be demonstrated in vitro and also in vivo as shown by co-immunoprecipitation analysis in CML cells. Using a temperature sensitive Bcr-Abl stably overexpressed in hematopoetic cells, we demonstrated that complex formation of Grb10 with Bcr-Abl was kinase activation-dependent in vivo. Notably, a Bcr-Abl mutant protein (Bcr/1-242-Abl) which lacks the ability to interact with Grb10 partially alleviated IL-3 dependence of Ba/F3 cells, indicating that the Grb10/Bcr-Abl interaction is important for Bcr-Abl-induced IL-3 independence of Ba/F3 cells. In addition, the Bcr/1-242-Abl mutant has a reduced capacity to induce focus formation in fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, R., Jahn, T., Schrem, S. et al. The SH2-containing adapter protein GRB10 interacts with BCR-ABL. Oncogene 17, 941–948 (1998). https://doi.org/10.1038/sj.onc.1202024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202024

Keywords

This article is cited by

Search

Quick links