Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells

Abstract

In order to elucidate the biochemical mechanisms by which the universal cyclin kinase inhibitor p27Kip1 regulates cell cycle progression in human breast cancer cells, a recombinant adenovirus expressing human p27 was constructed (Adp27). Upon infection of human breast cancer cells MDA-MB-231 and MCF-7 with Adp27, a high level of p27 expression was observed, and this resulted in a marked decrease in the proportion of cells in S-phase. In multiple cell lines, comparison of the cytotoxicity of Adp27 with another adenovirus vector expressing the related universal cyclin kinase inhibitor WAF1/Cip1 (AdWAF1), showed Adp27 to be markedly more (up to 56-fold) toxic than AdWAF1. DNA histograms showed Adp27 to cause a G1/S arrest at lower viral doses than AdWAF1. Analysis of cyclin dependent kinase activity following Adp27 infections showed decreased Cdk2 and cyclin B1-Cdc2 activity at lower viral doses when compared with AdWAF1. Adp27 is therefore potentially useful for studies of growth regulation and for gene therapy when growth inhibition is desired.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, C., Wersto, R., Kim, M. et al. A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells. Oncogene 14, 2283–2289 (1997). https://doi.org/10.1038/sj.onc.1201064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201064

Keywords

Search

Quick links