Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Nuclear accumulation of fibroblast growth factor receptors in human glial cells-association with cell proliferation

Abstract

In this study we describe the presence of high affinity FGF-2 binding sites in the nuclei of U251MG glioma cells (Kd=7 pM). Immunoprecipitation of total cell extracts with FGF receptor (FGFR) 1-4 antibodies showed that U251MG glioma cells express only FGFR1. [125I]FGF-2 cross linking to nuclear extracts followed by FGFR1 immunoprecipitation showed that FGFR1 may account for the nuclear FGF-2 binding sites. Western blot analysis demonstrated the presence of 103, 118 kDa and small amounts of 145 kDa FGFR1 isoforms in the nuclei of glioma cells. All isoforms contain both the C- and N-terminal domains. Nuclear FGFR1 retains kinase activity. Immunocytochemistry using confocal microscopy showed specific FGFR1 immunoreactivity within the nuclear interior. In continuously proliferating glioma cells, nuclear FGFR1 is constitutively expressed, independent of cell density. In contrast, in nontransformed human astrocytes, nuclear FGFR1 levels fluctuate with the proliferative state of the cell. In quiescent, confluent astrocytes nuclear FGFR1 protein was depleted. An accumulation of nuclear FGFR1 was observed following the transition to a subconfluent, proliferating state. Transfection of a pcDNA3.1-FGFR1 expression vector into glioma cells that do not express FGFR1 resulted in the nuclear accumulation of FGFR1, increased cell proliferation, and stimulated transition from the G0/G1 to the S-phase of the cell cycle. The increased proliferative rate was resistant to inhibition by the cell-impermeable FGF binding antagonist, myoinositol hexakis [dihydrogen phosphate]. Our results suggest that the constitutive nuclear presence of FGFR1 contributes to the increased proliferation of glioma cells while the transient nuclear accumulation of FGFR1 in normal astrocytes may play a role in the transition to a reactive state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stachowiak, E., Maher, P., Tucholski, J. et al. Nuclear accumulation of fibroblast growth factor receptors in human glial cells-association with cell proliferation. Oncogene 14, 2201–2211 (1997). https://doi.org/10.1038/sj.onc.1201057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201057

Keywords

This article is cited by

Search

Quick links