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of Fizeau's water-tube experiment, the prediction 
of the law connecting electronic mass with velo
city, and the prediction of ponderomotive electro
magnetic forces in moving media. 

One final, and therefore crucial, test remains : 
gravitation. It was soon noticed that the hypo
thesis was inconsistent with the exact truth of 
Newton's gravitational law of force mm1 fr2• Thus 
the hypothesis of relativity predicts that a freely 
moving planet cannot describe a perfect ellipse 
about the sun as focus. This prediction is made 
on quite general grounds, just as the conservation 
of energy predicts that a stream of water cannot 
flow uphill. But the conservation of energy by 
itself is powerless to predict what will be the 
actual course of a stream of water, and in pre
cisely the same way the hypothesis of relativity 
alone is powerless to predict what will be the orbit 

of a planet. Before this or any other positive 
gravitational predictions can be made, additional 
hypotheses must be introduced. The main trunk 
of the tree is the relativity hypothesis already men
tioned; these additional hypotheses form the 
branches. The trunk can exist without its 
branches, but not the branches without the trunk. 
Whether the branches have been placed on the 
trunk with complete accuracy is admittediy still 
an open question-it must of necessity remain so 
until the difficult questions associated with the 
gravitational shift of lines have been 
finally settled-but the main trunk of the tree can 
be disturbed by nothing short of a direct experi
mental determination of the absolute velocity of 
the earth, and the only means which can possibly 
remain available for such a determination now are 
gravitational. · 

The Michelson-Morley Experiment and the Dimensions of Moving Bodies. 
By PRoF. H. A. LoRENTZ, For.Mem.R.S. 

As doubts have sometimes been expressed con
cerning the interpretation of Prof. Michel

son's celebrated experiment, some remarks on the 
subject will perhaps not be out of place here. I 
shall try to show, by what seems to me an unim
peachable mode of reasoning, that, if we adopt 
Fresnel's theory of a stationary rether, supposing 
also that a material system can have a uniform 
translation with constant velocity v without 
changing its dimensions, we must surely expect 
the result that was predicted by Maxwell. 

Let us introduce a system of rectangular axes 
of co-ordinates fixed to the material system, the 
axis of x being in the direction of the motion. 
Then, with respect to these axes, the rether will 
flow with the velocity - v. The progress of waves 
of light, relatively to them, may be traced 
by means of Huygens's principle; for this 
purpose it suffices to know the form and position 
of the elementary waves. For the sake of gene
rality I shall suppose the propagation to take 
place in a material medium of refractive index 
p., so that, if c is the velocity of light in the 
rether, the velocity in the medium when at rest 
would be c / p.. The elementary wave formed in the 
time dt around a point P will be a sphere of radius 
(c/tL)dt, of which the centre P 1 does not, however, 
coincide with P, the line PP1 being in the direction 
opposite to that of OX, and having the length 
(vI tL2)dt (Fresnel's +;oefficie.nt). 

If Q is any point on the surface of the sphere, 
PQ can be considered as an element of a ray of 
light, and w = PQ I dt will be the velocity of the ray. 
Confining ourselves to terms of the second order, 
i.e. of the order v2 lc2, and denoting by 8 the 
angle between the ray and OX, we have 

I 11- v v 1 2 =-+-cos a+- -3(1 +cos a) (1) 
w c c2 211-c 

Now, let A and B be points having fixed posi
tions in the material system. The course s of a 
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ray of light passing from A to B will be deter
mined by the condition that the integral 

14!_ .. 
w, 

. (l) 

is a minimum. Using the above value of rfw, it is 
easily shown that, if quantities of the second 
order are neglected, the course of the ray is not 
affected by the translation v, so that, if L0 is the 
path of the ray in the case v=o, and L the real 
path, these lines will be distant from each other 
to an amount of the second order only. Hence, 
if in the case of a translation v we calculate by 
means of (r) the integral (z), both for L and L0, 

the two values will differ by no more than a quan
tity of the fourth order; indeed, since the integral 
is a minimum for L, the difference must be of 
the second order with respect to the distances 
between L and L0, and these distances are already 
of the second order of magnitude. 

It is seen in this way that, so long as we 
neglect terms of an order higher than the second, 
we rna y replace 

(c!_s by jt!s, 
. w w 
L LO 

i an argument that must not be overlooked in the 
theory of the experiment. On the ground of it 
we shall commit no error if, in determining the 
paths L1 and L2 of two rays that start from a 
point A, and are made to interfere at a point B, 
we take no account of the motion of the apparatus. 
The change in the difference of phase produced by 
the translation will be given by the difference 
between the values which the integral 

( - -'< (I + cos2 a) ds 
• 2fU" 

takes for the lines L1 and L2 so determined. If, 
along the first of them, cos2 o= r, and along the 
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second cos2 o = o, and p. =I, the change will be the 
same as would be produced by a lengthening of 
L1 in the ratio of I to I+ v 2 I zc2. As no displace
ment of the fringes has been observed, we are led 
to the well-known hypothesis of a contraction of 
moving bodies in the direction of translation, in 
the ratio of r to I - v2 1 zc2. 

We could now try to extend the above con
siderations to cases in which vIc, though always 
below I, is no longer a small fraction. This 
would require somewhat lengthy calculations, into 
which, however, we need not enter here, because 
we know by the theory of relativity that the true 
value of the coefficient of contraction is .; I- v2 j zc2. 
I may remark here that there can be no question 
about the reality of this change of length. Sup
pose that, in studying the phenomena, we use a 
system of rectangular co-ordinates x 1, x2 , x8 , and 
a time t, and that in this system the velocity of 
light is c in all directions. Further, let there be 
two rods, I. and II., exactly equal to each other, 
and both placed in the direction of x 1, I. at rest 
in the system of co-ordinates, and II. moving in 
the direction of its length with a velocity v. 
Then, certainly, if the length of a rod is measured 
by the differences of the values which the co
ordinate x1 has at the two ends at one and the 
same instant t, I I. will be shorter than I., just as 
it would be if it were kept at a lower temperature. 
I need scarcely add that if, by the ordinary trans
formation of the theory of relativity, we pass to 
new co-ordinates x/, x2

1, x 3
1, t1 in such a manner 

that in this system the rod II. is at rest, and if 
now we measure the lengths by the difference 
between the values of x/ which correspond to a 
definite value of t 1, I. will be found to be the 
shorter of the two. 

The question arises as to how far the dimensions 
of a solid body will be changed when its parts 
have unequal velocities, when, for example, it 
has a rotation about a fixed axis. It is clear that 
in such a case the different parts of the body will, 
by their interaction, hinder each other in their 
tendency to contract to the amount determined 
by .; I - v 2 I c2: The problem can be solved by the 
ordinary theory of elasticity, provided only that 
this theory be first adapted to the principle of rela
tivity. Indeed, we can still use Hamilton's prin-
ciple:- . 

a J:: dt j(T- U)dS =o . . . . . (3) 

element of volume; T, kinetic, and U, poten
tial, energy, both per unit of volume), if, by some 
slight modifications, the integral is made to be 
independent of the particular choice of co-ordin
ates. That this can be done, even in the general 
theory of relativity (theory of gravitation), is due 
to the possibility of expressing the length of a 
line-element in the four-dimensional space x1, x2, 

x8, x4 (x4 =t) in "natural units "--i.e. in such a 
manner that the number obtained for it is the 
same whatever be the co-ordinates chosen-and 
of measuring angles in a similar way. As is well 
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known, the length ds of a line-element is given 
by the formula :-

ds2="£(ab)g.bdx.dxb, . . (4) 

where the ten quantities gab (gab=gba) are the 
gravitation potentials, and the angle o between 
two elements is determined by 

cos CJ dsd's='£(ab)gabd:rad'xb . . . (S) 

In the sums, each of the indices a and b is 
to be given the values I, 2, 3, 4· When the 
value 4 is excluded, as will be the case in some 
of the following formulre, a Greek letter will be 
used for the index. 

We can also find an invariant value l for the 
distance between two material particles P and P' 
infinitely near each other. To this effect we 
have to consider the word-lines L and L' of these 
particles in the space x 11 x 2, x8, x4• Let Q be 
the point of L corresponding to the chosen time 
x4 , and Q' a point of L' such that QQ' is at right 
angles to L. Then the length of QQ', determined 
by means of (4), will be the value required. Simi
larly, if P" is a third particle, infinitely near P 
and P', and Q" the point of its word-line so 
situated that QQ" is perpendicular to L, the angle 
P1PP" will be taken to be the angle between the 
elements QQ' and QQ" determined according to 
(s). 

As to the co-ordinates x 1, x2 , x 3, x 4, it may be 
recalled that, in a field free from gra.,vitation, they 
may be chosen in such a manner (x1, x2, x 3 being 
at right angles to each other) that the velocity 
of light has the constant magnitude c; the 
potentials gab will in this case have the values 

K11 =g22=K33=- I, g44=c2,Kab=o for a =I= b. 

These may be called the normal values of the 
potentials, and a system of co-ordinates for which 
they hold a normal system. 

Let us now consider a solid body M, and let 
us first conceive it to be placed in a normal system 
of co-ordinates (S0), and to be at rest in that 
system, free from all external forces. The body 
may then be said to be in its natural state, and 
its particles may be distinguished from each other 
by their co-ordinates ry, with respect to three 
rectangular axes fixed in the body. In all that 
follows, these quantities will be constant, and so 
will be the mass of an element, p being 
the density in the natural state. 

VIe shall now suppose the body to be placed in 
a system of co-ordinates x1, x 2 , x 3, x 4 (S), not 
necessarily normal, and to pave some kind of 
motion in that system. It is this motion, in which 
x 1, x2 , x 3 will be definite functions of ry, and 
x 4 , which we want to determine by means of 
Hamilton's principle properly modified. 

In· order to get the new U, I shall introduce 
the dilatations 'Y),, t, and shearing strains 'YJn t, 
with respect to the axes ry, These quantities 
are defined as follows :-

Let P, P1 be the particles ry, L and + 'Y), t, 
and let l be their distance in the state considered 
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(system S), and Z0 their distance in the natural 
state (system S0), these distances being both 
determined in the manner specified in what pre
cedes. Then 

Again, if P 11 is the particle YJ + dYJ, t, and if 
the angle P1PP 11 , calculated as stated before, has 
in the two cases the values lJ and ll0( =t1r), we 
shall have 

a. 
The six deformations . . . will be considered 

as infinitely small. In the problem we have in 
view, they are of the order of magnitude v2 f c2, so 
that our final result will be correct to that order. 

If we put 

U Cs)2 + 
(6) 

the well-known expression for the potential energy 
of an isotropic elastic body, U will be invariant 
for any change of co-ordinates. 

As to the kinetic energy T, it is to be replaced 

b · ·· ds F'"ll y a n expressiOn contammg p - -. ma y, we 
dt 

must write, instead of (3), 

aj'"j<-cp- l_u )t!:._dsdtdgd!JdC=o. 
tl c t 

We have still to add the formulre that are 
found by working out the above definiti0ns of 

etc., viz. 

[ 'i (a{3)g.fjVfj 0X,J2 
qx!l _ _ t 

2'E(ub)gabv av b ' 

ox. ox. 
, ox. ox11 · 
};(afJ)g.11- _ + u'1 

0'1 '2(ab)gabvav b 

(v1, v2, v3 are the components of the velocity, 
and v 4= 1). 

In our problem the body is supposed to move 
in a normal system of co-ordinates. By this our 
formulre simplify to 1 

(7) 

1 1f in (7) we replace (r- by 1 - y,2f2c2) omitting the constant term 
- a2p and neglecting U. 7/!•/2c2, we are led back to the ordinary forrnwla (3). 

ox. ox. 
- ox.ox. 

-+- ----------
og OTJ 

When applied to a revolving body, these equa
tions will enable us to determine the deformation 
that is produced, wholly independently of the 
theory of relativity, by centrifugal force, a de
formation that will in reality far surpass the 
changes we want to consider. To get free from 
it we can consider the ideal case of a "rigid " 
body-i.e. a body for which the moduli of elas
ticity A and B in (6) are infinitely great. The 
centrifugal force will then have no effect on the 
dimensions, but the changes required by the theory 
of relativity will subsist. The assumption has 
also the advantage of simplifying the calculations; 
indeed, since U becomes infinitely great, the term 
-c2p in (7) may be omitted. 

I have worked out the case of a thin circular 
disc rotating with constant speed about an axis 
passing through its centre, at right angles to its 
plane. The result is that, if v is the velocity at 
the rim, the radius will be shortened in the ratio of 

' 2 
r to I - '!!_, The circumference changing to the 

8 c" 
same extent, its decrease is seen to be exactly 

of that of a rod moving with . the same 
velocity in the direction of i,ts length. That there 
would be a smaller contraction was to be ex
pected ; indeed, the case can be compared to what 
takes place when a hot metal band is fitted tightly 
around a wheel and then left to cool. 

At first sight our problem seems to lead to a 
paradox. Let there be two equal discs A and B, 
mounted on the same axis, A revolving and B at 
rest. Then A will be smaller than B, and it must 
certainly appear so (the discs· being supposed to 
be quite near each other) to any observer, what
ever be the system of co-ordinates he chooses to 
use. However, we can introduce a system of 
co-ordinates S' revolving with the disc A; with 
respect to these it will be B that rotates, and so 
one might think that now this latter disc would 
be the smaller of the two. The conclusion would 
be wrong because the system S1 would not be a 
normal one. If we leave S for it, we must at 
the same time change the potentials g ab, and if 
this is done the fundamental equation will cer
tainly again lead to the result that A is smaller 
than B. 

The Geometrisation of Physics, and its Supposed Basis on the Michelson-Morley 
Experiment. 

By SIR OLIVER LODGE, F.R.S. 

SO much has been written about the Michelson· 
Morley experiment that it would be needless 

to refer to it here, had it not been interpreted by 
philosophic writers in an interesting but over
violent ar;d, as some think, illegitimate manner. 
Historically it really does lie at the root of the 
remarkable attempt which is being made to geo-
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metrise physics, and to reduce sensible things 
like weight and inertia to a modification of space 
and time. The work of great Geometers has been 
pressed into the service, and a differential
invariant scheme of expression has been ·utilised 
to do for physics in general, and especially for 
gravitation, what Maxwell's equations did for 
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