Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Urinary albumin excretion is associated with impaired flow- and nitroglycerin-mediated brachial artery dilatation in hypertensive adults

Abstract

We investigated whether the urinary albumin/creatinine ratio (UACR), a measure of albuminuria, is associated with non-invasive measures of arterial function in hypertensive adults without known coronary heart disease (CHD) or stroke. UACR was measured in the first voided morning urine sample in 469 non-Hispanic white hypertensive individuals (mean age 62.2±9.8 years, 41% men) belonging to hypertensive sibships. High-resolution ultrasonography of the brachial artery was used to assess flow-mediated dilatation (FMD) – an endothelium-dependent response – and nitroglycerin-mediated dilatation (NMD) – an endothelium-independent response. Because of skewed distribution, UACR was log transformed after addition of 0.1. The association of log (UACR+0.1) with FMD and NMD, before and after adjustment for CHD risk factors, serum creatinine, and hypertension medication and statin use was assessed using linear regression analyses. In univariable analyses, variables associated with lower FMD were greater age, male sex, history of smoking, lower high-density lipoprotein (HDL) cholesterol, higher serum creatinine and higher log (UACR+0.1); variables associated with lower NMD were greater age, male sex, higher systolic blood pressure, lower HDL cholesterol, higher serum creatinine and higher log (UACR+0.1). In separate stepwise multivariable regression analyses that adjusted for conventional CHD risk factors, serum creatinine and hypertension medication and statin use, higher log (UACR+0.1) was associated with lower brachial artery FMD (P=0.035) and NMD (P=0.0002). These findings highlight the association of increased urinary albumin excretion with impaired vascular reactivity in hypertensive individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Verdecchia P, Reboldi GP . Hypertension and microalbuminuria: the new detrimental duo. Blood Press 2004; 13: 198–211.

    Article  CAS  Google Scholar 

  2. Bigazzi R, Bianchi S, Baldari D, Campese VM . Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens 1998; 16: 1325–1333.

    Article  CAS  Google Scholar 

  3. Karalliedde J, Viberti G . Microalbuminuria and cardiovascular risk. Am J Hypertens 2004; 17: 986–993.

    Article  CAS  Google Scholar 

  4. Rosa TT, Palatini P . Clinical value of microalbuminuria in hypertension. J Hypertens 2000; 18: 645–654.

    Article  CAS  Google Scholar 

  5. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE et al. Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med 2003; 139: 901–906.

    Article  Google Scholar 

  6. Agrawal B, Berger A, Wolf K, Luft FC . Microalbuminuria screening by reagent strip predicts cardiovascular risk in hypertension. J Hypertens 1996; 14: 223–228.

    Article  CAS  Google Scholar 

  7. Jensen JS, Feldt-Rasmussen B, Strandgaard S, Schroll M, Borch-Johnsen K . Arterial hypertension, microalbuminuria, and risk of ischemic heart disease. Hypertension 2000; 35: 898–903.

    Article  CAS  Google Scholar 

  8. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001; 286: 421–426.

    Article  CAS  Google Scholar 

  9. Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, Schroll M, Jensen JS . Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol 1999; 19: 1992–1997.

    Article  CAS  Google Scholar 

  10. Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE et al. Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension 2005; 45: 198–202.

    Article  CAS  Google Scholar 

  11. Pedrinelli R, Dell'Omo G, Penno G, Mariani M . Non-diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease. Vasc Med 2001; 6: 257–264.

    Article  CAS  Google Scholar 

  12. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–1115.

    Article  CAS  Google Scholar 

  13. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235–1241.

    Article  CAS  Google Scholar 

  14. Boerwinkle E . Multi-Center Genetic Study of Hypertension: The Family Blood Pressure Program (FBPP). Hypertension 2002; 39: 3–9.

    Article  Google Scholar 

  15. O'Meara JG, Kardia SL, Armon JJ, Brown CA, Boerwinkle E, Turner ST . Ethnic and sex differences in the prevalence, treatment, and control of dyslipidemia among hypertensive adults in the GENOA study. Arch Intern Med 2004; 164: 1313–1318.

    Article  Google Scholar 

  16. Kullo IJ, Li G, Bielak LF, Bailey KR, Sheedy PF II, Peyser PA et al. Association of plasma homocysteine with coronary artery calcification in different categories of coronary heart disease risk. Mayo Clin Proc 2006; 81: 177–182.

    Article  CAS  Google Scholar 

  17. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145: 247–254.

    Article  CAS  Google Scholar 

  18. Freedman BI, Beck SR, Rich SS, Heiss G, Lewis CE, Turner S et al. A genome-wide scan for urinary albumin excretion in hypertensive families. Hypertension 2003; 42: 291–296.

    Article  CAS  Google Scholar 

  19. Hutchison AS, O'Reilly DS, MacCuish AC . Albumin excretion rate, albumin concentration, and albumin/creatinine ratio compared for screening diabetics for slight albuminuria. Clin Chem 1988; 34: 2019–2021.

    CAS  PubMed  Google Scholar 

  20. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA et al. Guidelines for the ultrasound assessment of endothelial-dependent flow- mediated vasodilation of the brachial artery. A report of the International brachial artery reactivity task force. J Am Coll Cardiol 2002; 39: 257–265.

    Article  Google Scholar 

  21. Zeger SL, Liang KY . Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121–130.

    Article  CAS  Google Scholar 

  22. Hartland A, Gosling P . Microalbuminuria: yet another cardiovascular risk factor? Ann Clin Biochem 1999; 36: 700–703.

    Article  Google Scholar 

  23. Russo LM, Bakris GL, Comper WD . Renal handling of albumin: a critical review of basic concepts and perspective. Am J Kidney Dis 2002; 39: 899–919.

    Article  CAS  Google Scholar 

  24. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L et al. Insulin resistance in essential hypertension. N Engl J Med 1987; 317: 350–357.

    Article  CAS  Google Scholar 

  25. Yudkin JS . Hyperinsulinaemia, insulin resistance, microalbuminuria and the risk of coronary heart disease. Ann Med 1996; 28: 433–438.

    Article  CAS  Google Scholar 

  26. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995; 91: 1314–1319.

    Article  CAS  Google Scholar 

  27. Dogra G, Rich L, Stanton K, Watts GF . Endothelium-dependent and independent vasodilation studies at normoglycaemia in type I diabetes mellitus with and without microalbuminuria. Diabetologia 2001; 44: 593–601.

    Article  CAS  Google Scholar 

  28. Papaioannou GI, Seip RL, Grey NJ, Katten D, Taylor A, Inzucchi SE et al. Brachial artery reactivity in asymptomatic patients with type 2 diabetes mellitus and microalbuminuria (from the Detection of Ischemia in Asymptomatic Diabetics-brachial artery reactivity study). Am J Cardiol 2004; 94: 294–299.

    Article  Google Scholar 

  29. Yu Y, Suo L, Yu H, Wang C, Tang H . Insulin resistance and endothelial dysfunction in type 2 diabetes patients with or without microalbuminuria. Diabetes Res Clin Pract 2004; 65: 95–104.

    Article  CAS  Google Scholar 

  30. Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM . Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction--the Hoorn Study. Kidney Int Suppl 2004; 66: S42–S44.

    Article  Google Scholar 

  31. Jawa A, Nachimuthu S, Pendergrass M, Asnani S, Fonseca V . Impaired vascular reactivity in African-American patients with type 2 diabetes mellitus and microalbuminuria or proteinuria despite angiotensin-converting enzyme inhibitor therapy. J Clin Endocrinol Metab 2006; 91: 31–35.

    Article  CAS  Google Scholar 

  32. Meeking DR, Cummings MH, Thorne S, Donald A, Clarkson P, Crook JR et al. Endothelial dysfunction in Type 2 diabetic subjects with and without microalbuminuria. Diabet Med 1999; 16: 841–847.

    Article  CAS  Google Scholar 

  33. Diercks GF, Stroes ES, van Boven AJ, van Roon AM, Hillege HL, de Jong PE et al. Urinary albumin excretion is related to cardiovascular risk indicators, not to flow-mediated vasodilation, in apparently healthy subjects. Atherosclerosis 2002; 163: 121–126.

    Article  CAS  Google Scholar 

  34. Kathiresan S, Gona P, Larson MG, Vita JA, Mitchell GF, Tofler GH et al. Cross-sectional relations of multiple biomarkers from distinct biological pathways to brachial artery endothelial function. Circulation 2006; 113: 938–945.

    Article  CAS  Google Scholar 

  35. Perticone F, Maio R, Tripepi G, Zoccali C . Endothelial dysfunction and mild renal insufficiency in essential hypertension. Circulation 2004; 110: 821–825.

    Article  CAS  Google Scholar 

  36. Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell'Omo G, Catapano G et al. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 1994; 344: 14–18.

    Article  CAS  Google Scholar 

  37. Clausen P, Jensen JS, Jensen G, Borch-Johnsen K, Feldt-Rasmussen B . Elevated urinary albumin excretion is associated with impaired arterial dilatory capacity in clinically healthy subjects. Circulation 2001; 103: 1869–1874.

    Article  CAS  Google Scholar 

  38. Mehta JL . Endothelium, coronary vasodilation, and organic nitrates. Am Heart J 1995; 129: 382–391.

    Article  CAS  Google Scholar 

  39. Zhang X, Zhao SP, Li XP, Gao M, Zhou QC . Endothelium-dependent and -independent functions are impaired in patients with coronary heart disease. Atherosclerosis 2000; 149: 19–24.

    Article  CAS  Google Scholar 

  40. Adams MR, Robinson J, McCredie R, Seale JP, Sorensen KE, Deanfield JE et al. Smooth muscle dysfunction occurs independently of impaired endothelium-dependent dilation in adults at risk of atherosclerosis. J Am Coll Cardiol 1998; 32: 123–127.

    Article  CAS  Google Scholar 

  41. Yugar-Toledo JC, Bonalume Tacito LH, Ferreira-Melo SE, Sousa W, Consolin-Colombo F, Irigoyen MC et al. Low-renin (volume dependent) mild-hypertensive patients have impaired flow-mediated and glyceryl-trinitrate stimulated vascular reactivity. Circ J 2005; 69: 1380–1385.

    Article  CAS  Google Scholar 

  42. Schachinger V, Britten MB, Zeiher AM . Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899–1906.

    Article  CAS  Google Scholar 

  43. Higashi Y, Oshima T, Ozono R, Watanabe M, Matsuura H, Kajiyama G . Effects of L-arginine infusion on renal hemodynamics in patients with mild essential hypertension. Hypertension 1995; 25: 898–902.

    Article  CAS  Google Scholar 

  44. Higashi Y, Oshima T, Ozono R, Matsuura H, Kajiyama G . Aging and severity of hypertension attenuate endothelium-dependent renal vascular relaxation in humans. Hypertension 1997; 30: 252–258.

    Article  CAS  Google Scholar 

  45. Tsioufis C, Dimitriadis K, Chatzis D, Vasiliadou C, Tousoulis D, Papademetriou V et al. Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol 2005; 96: 946–951.

    Article  CAS  Google Scholar 

  46. Gokce N, Holbrook M, Hunter LM, Palmisano J, Vigalok E, Keaney Jr JF et al. Acute effects of vasoactive drug treatment on brachial artery reactivity. J Am Coll Cardiol 2002; 40: 761–765.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Mentored Patient-Oriented Research Career Development Award (K-23, RR17720) from the National Center for Research Resources to IJK, by grants HL54464 and M01 RR00585 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I J Kullo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, A., Sultan, S., Turner, S. et al. Urinary albumin excretion is associated with impaired flow- and nitroglycerin-mediated brachial artery dilatation in hypertensive adults. J Hum Hypertens 21, 231–238 (2007). https://doi.org/10.1038/sj.jhh.1002143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002143

Keywords

This article is cited by

Search

Quick links