Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of nifedipine on adiponectin in hypertensive patients with type 2 diabetes mellitus

Abstract

Nifedipine, a dihydropyridine calcium antagonist, improves endothelial function in patients with hypercholesterolaemia by enhancing nitric oxide (NO) activity, and increases endothelial NO bioavailability by antioxidant mechanisms. We administered a long-acting nifedipine formulation (controlled release (CR) nifedipine: 20 mg/day) to hypertensive patients for 6 months. There were no other changes of drug treatment during therapy with CR nifedipine. Clinical and biochemical data obtained before and after CR nifedipine administration were compared. All markers were measured by enzyme-linked immunosorbant assay. The levels of soluble markers (soluble CD40 ligand, soluble P-selectin, and soluble E-selectin), microparticles (MP) (platelet-derived MP, monocyte-derived MP, and endothelial cell-derived MP), and adiponectin differed between the control group and the hypertension group. The levels of these markers were also different in hypertensive patients with and without type 2 diabetes compared with the control group. In the hypertensive patients with type 2 diabetes, all markers except adiponectin decreased significantly after 3 months of CR nifedipine treatment. In contrast, markers were unchanged in the hypertensive patients without type 2 diabetes. Adiponectin was increased after 6 months of CR nifedipine treatment in hypertensive patients with type 2 diabetes. The effects of CR nifedipine on platelet/monocyte activation and adiponectin levels demonstrated in the present study indicate the potential effectiveness of calcium antagonist therapy for hypertensive patients with type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Garcia Frade LJ, dela Calle H, Alava l, Navarro JL, Creighton LJ, Gaffney PJ . Diabetes as a hypercoagulable state: its relationship with fibrin fragments and vascular damage. Thromb Res 1987; 47: 533–540.

    Article  CAS  Google Scholar 

  2. Colwell JA, Halushka PV . Platelet function in diabetes. Br J Haematol 1980; 44: 521–526.

    Article  CAS  Google Scholar 

  3. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ . Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988; 263: 18205–18212.

    CAS  PubMed  Google Scholar 

  4. Nomura S, Suzuki M, Katsura K, Xie GL, Miyazaki Y, Miyake T et al. Platelet-derived microparticles may influence the development of atherosclerosis in diabetes. Atherosclerosis 1995; 116: 235–240.

    Article  CAS  Google Scholar 

  5. Nomura S . Function and clinical significance of platelet-derived microparticles. Int J Hematol 2001; 74: 397–404.

    Article  CAS  Google Scholar 

  6. Nomura S, Kanazawa S, Fukuhara S . Effects of eicosapentaenoic acid on platelet activation markers and cell adhesion molecules in hyperlipidemic patients with type 2 diabetes mellitus. J Diabetes Complicat 2003; 17: 153–159.

    Article  Google Scholar 

  7. Nomura S, Takahashi N, Inami N, Kajiura T, Yamada K, Nakamori H et al. Probucol and ticlopidine: effect on platelet and monocyte activation markers in hyperlipidemic patients with and without type 2 diabetes. Atherosclerosis 2004; 174: 329–335.

    Article  CAS  Google Scholar 

  8. Ogata N, Imaizumi M, Nomura S, Shouzu A, Arich M, Matsuoka M et al. Increased levels of platelet-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pr 2005; 68: 193–201.

    Article  CAS  Google Scholar 

  9. Drake TA, Ruf W, Morrissey JH, Edgington TS . Functional tissue factor is entirely surface expressed on lipopolysaccharide stimulated human blood monocytes and a constitutively tissue factor producing neoplastic cell line. J Cell Biol 1989; 109: 389–394.

    Article  CAS  Google Scholar 

  10. Osnes LTN, Westvik AB, Kieruf P . Procoagulant and profibrinolytic activities of cryopreserved human monocytes. Thromb Res 1994; 76: 373–383.

    Article  CAS  Google Scholar 

  11. Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Esshewegw V et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 1994; 153: 3245–3255.

    CAS  PubMed  Google Scholar 

  12. Omoto S, Nomura S, Shouzu A, Nishikawa M, Fukuhara S, Iwasaka T . Detection of monocyte-derived microparticles in patients with type II diabetes mellitus. Diabetologia 2002; 45: 550–555.

    Article  CAS  Google Scholar 

  13. Nomura S, Kanazawa S, Fukuhara S . Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus. J Hum Hypertens 2002; 16: 539–547.

    Article  CAS  Google Scholar 

  14. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T . Benidipine improves oxidized LDL-dependent monocyte and endothelial dysfunction in hypertensive patients with type 2 diabetes mellitus. J Hum Hypertens 2005; 19: 551–557.

    Article  CAS  Google Scholar 

  15. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T, Fukuhara S . Activated platelet and oxidized LDL induce endothelial membrane vesiculation: clinical significance of endothelial cell-derived microparticles in patients with type 2 diabetes. Clin Appl Thromb Hemost 2004; 10: 205–215.

    Article  CAS  Google Scholar 

  16. Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S, Iwasaka T . Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res 2006; 117: 385–392.

    Article  CAS  Google Scholar 

  17. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappa B signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296–1301.

    Article  CAS  Google Scholar 

  18. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.

    Article  CAS  Google Scholar 

  19. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetes patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  CAS  Google Scholar 

  20. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    Article  CAS  Google Scholar 

  21. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein, adiponectin. Circulation 1999; 100: 2473–2476.

    Article  CAS  Google Scholar 

  22. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ . Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003; 278: 45021–45026.

    Article  CAS  Google Scholar 

  23. Hattori Y, Suzuki M, Hattori S, Kasai K . Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia 2003; 46: 1543–1549.

    Article  CAS  Google Scholar 

  24. Schulze MB, Rimm EB, Shai I, Ritai N, Hu FB . Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes. Diabetes Care 2004; 27: 1680–1687.

    Article  CAS  Google Scholar 

  25. Verhaar MC, Honing HL, van Dam T, Zwart M, Koomans HA, Kastelein JJ et al. Nifedipine improves endothelial function in hypercholesterolemia, independently of an effect on blood pressure or plasma lipids. Cardiovasc Res 1999; 42: 752–760.

    Article  CAS  Google Scholar 

  26. Berkels R, Eqink G, Marsen TA, Bartels H, Roesen R, Klaus W . Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms. Hypertension 2001; 37: 240–245.

    Article  CAS  Google Scholar 

  27. The National High Blood Pressure Education Program Working Group. National High Blood Pressure Education Program Working Group Report on Hypertension in diabetes. Hypertension 1994; 23: 145–158.

  28. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert commitee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997; 20: 1183–1197.

  29. Mattock MB, Barnes DJ, Viberti G, Keen H, Burt D, Hughes JM et al. Microalbuminuria and coronary heart disease in non-insulin- dependent diabetes: an incidence study. Diabetes 1998; 47: 1786–1792.

    Article  CAS  Google Scholar 

  30. Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M et al. Effect of the angiotensin-converting enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Engl J Med 1996; 334: 939–945.

    Article  CAS  Google Scholar 

  31. Zucchelli P, Zuccala A, Borghi M, Fusaroli M, Sasdelli M, Stallone C et al. Long-term comparison between captopril and nifedipine in the progression of renal insufficiency. Kidney Int 1992; 42: 452–458.

    Article  CAS  Google Scholar 

  32. Kawata T, Hashimoto S, Koike T . Diversity in the renal hemodynamic effects of dihydropyridine calcium blockers in spontaneously hypertensive rats. J Cardiovasc Pharmacol 1997; 30: 431–436.

    Article  CAS  Google Scholar 

  33. Gong L, Zhang W, Zhu Y, Zhu J, Kong D, Page V et al. Shanghai trial of nifedipine in the elderly (STONE). J Hypertens 1996; 14: 1237–1245.

    Article  CAS  Google Scholar 

  34. Lupo E, Locher R, Weisser B, Vetter W . In vitro antioxidant activity of calcium antagonists against LDL oxidation compared with α-tocopherol. Biochem Biophys Res Commun 1994; 203: 1803–1808.

    Article  CAS  Google Scholar 

  35. Berkels R, Bertsch A, Breitenbach T . The calcium antagonist nifedipine stimulates endothelial NO release in therapeutical concentrations. Pharm Pharmcol Lett 1996; 2: 75–78.

    Google Scholar 

  36. Kitakaze M, Asanuma H, Takashima S, Minamino T, Ueda Y, Sakata Y et al. Nifedipine-induced coronary vasodilation in ischemic hearts is attributable to bradykinin- and NO-dependent mechanisms in dogs. Circulation 2000; 101: 311–317.

    Article  CAS  Google Scholar 

  37. Nyrop M, Zweifer AJ . Platelet aggregation in hypertension and the effects of antihypertensive treatment. J Hypertens 1988; 6: 263–269.

    Article  CAS  Google Scholar 

  38. Ross R . Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  CAS  Google Scholar 

  39. Hjemdahl P, Larsson PT, Wallen NH . Effects of stress and β-blockade on platelet function. Circulation 1991; 84 (Suppl VI): VI-44–VI-61.

    CAS  Google Scholar 

  40. Sinzinger H, Virgolini I, Rauscha F, Fitscha P, O'Grady J . Isradipine improves platelet function in hypertensives. Eur J Clin Pharmacol 1992; 42: 43–46.

    Article  CAS  Google Scholar 

  41. Tomoda F, Takata M, Kagitani S, Kinuno H, Yasumoto K, Tomita S et al. Effects of a novel calcium antagonist, benidipine hydrochloride, on platelet responsiveness to mental stress in patients with essential hypertension. J Cardiovasc Pharmacol 1999; 34: 248–253.

    Article  CAS  Google Scholar 

  42. Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S et al. Effects of intensive blood pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. Lancet 1998; 351: 1755–1762.

    CAS  Google Scholar 

  43. Mohlig M, Wegewitz U, Osterhoff M, Isken F, Ristow M, Pfeiffer AF et al. Insulin decreases human plasma adiponectin levels. Horm Metab Res 2002; 34: 655–658.

    Article  CAS  Google Scholar 

  44. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T . Long-term treatment with nifedipine modulates procoagulant marker and C-C chemokine in hypertensive patients with type 2 diabetes mellitus. Thromb Res 2005; 115: 277–285.

    Article  CAS  Google Scholar 

  45. Taddei S, Virdis A, Ghiadomi L, Maganda A, Favilla S, Pompella A et al. Restoration of nitric oxide availability after calcium antagonist treatment in essential hypertension. Hypertension 2001; 37: 943–948.

    Article  CAS  Google Scholar 

  46. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T . 5-HT2A receptor antagonist increases circulating adiponectin in patients with type 2 diabetes. Blood Coag Fibrinolys 2005; 16: 423–428.

    Article  CAS  Google Scholar 

  47. Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW . Retardation of aniographic progression of coronary artery disease by nifedipine (INTACT). Lancet 1990; 335: 1109–1113.

    Article  CAS  Google Scholar 

  48. Waters D, Lesperance J, Francetich M, Causey D, Theroux P, Chiang YK et al. A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 1990; 82: 1940–1953.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by a grant from the Japan Foundation of Neuropsychiatry and Hematology Research, a Research Grant for Advanced Medical Care from the Ministry of Health and Welfare of Japan, and a Grant (13670760 to SN) from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, S., Inami, N., Kimura, Y. et al. Effect of nifedipine on adiponectin in hypertensive patients with type 2 diabetes mellitus. J Hum Hypertens 21, 38–44 (2007). https://doi.org/10.1038/sj.jhh.1002100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002100

Keywords

This article is cited by

Search

Quick links