Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Context-dependency of the relation between left ventricular mass and AGT gene variants

Abstract

In the European Project on Genes in Hypertension (EPOGH), we investigated in three populations to what extent in a family-based study, left ventricular mass (LVM) was associated with the C−532T and G−6A polymorphisms in the angiotensinogen (AGT) gene. We randomly recruited 221 nuclear families (384 parents and 440 offspring) in Cracow (Poland), Novosibirsk (Russia), and Mirano (Italy). Echocardiographic LVM was indexed to body surface area, adjusted for covariables, and subjected to multivariate analyses, using generalized estimating equations and quantitative transmission disequilibrium tests in a population-based and family-based approach, respectively. We found significant differences between the two Slavic centres and Mirano in left ventricular mass index (LVMI) (94.9 vs 80.4 g/m2), sodium excretion (229 vs 186 mmol/day), and the prevalence of the AGT −6A (55.7 vs 40.6%) and −532T (16.8 vs 9.4%) alleles. In population-based as well as in family-based analyses, we observed positive associations of LVMI and mean wall thickness (MWT) with the −532T allele in Slavic, but not in Italian male offspring. Furthermore, in Slavic male offspring, LVMI and MWT were significantly higher in carriers of the −532T/−6A haplotype than in those with the −532C/−6G or −532C/−6A allele combinations. In women, LVMI was neither associated with single AGT gene variants nor with the haplotypes (0.19<P<0.98). In Slavic offspring carrying the AGT −532C/−6G or −532C/−6A haplotypes, LVMI significantly increased with higher sodium excretion (+3.5 g/m2/100 mmol; P=0.003), whereas such association was not present in −532T/−6A haplotype carriers (P-value for interaction 0.04). We found a positive association between LVMI and the AGT −532T allele due to increased MWT. This relation was observed in Slavic male offspring. It was therefore dependent on gender, age and ecogenetic context, and in addition it appeared to be modulated by the trophic effects of salt intake on LVM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Levy D et al. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham heart study. Ann Intern Med 1988; 108: 7–13.

    Article  CAS  PubMed  Google Scholar 

  2. Vakili BA, Okin PM, Devereux RB . Prognostic implications of left ventricular hypertrophy. Am Heart J 2001; 141: 334–341.

    Article  CAS  PubMed  Google Scholar 

  3. Danser AHJ, Saris JJ, Schuijt MP, van Kats JP . Is there a local renin–angiotensin system in the heart? Cardiovasc Res 1999; 44: 252–265.

    Article  CAS  PubMed  Google Scholar 

  4. Brasier AR, Li J . Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension 1996; 27: 465–475.

    Article  CAS  PubMed  Google Scholar 

  5. Vinck WJ, Fagard RH, Vlietinck R, Lijnen P . Heritability of plasma renin activity and plasma concentration of angiotensinogen and angiotensin-converting enzyme. J Hum Hypertens 2002; 16: 417–422.

    Article  CAS  PubMed  Google Scholar 

  6. Wu X et al. An association study of angiotensinogen polymorphisms with serum level and hypertension in an African-American population. J Hypertens 2003; 21: 1847–1852.

    Article  CAS  PubMed  Google Scholar 

  7. Brand E et al. Detection of putative functional angiotensinogen (AGT) gene variants controlling plasma AGT levels by combined segregation-linkage analysis. Eur J Hum Genet 2002; 10: 715–723.

    Article  CAS  PubMed  Google Scholar 

  8. Kuznetsova T et al. Maternal and paternal influences on left ventricular mass of offspring. Hypertension 2003; 41: 69–74.

    Article  CAS  PubMed  Google Scholar 

  9. Kuznetsova T et al. Quality control of the blood pressure phenotype in the European Project on Genes in Hypertension. Blood Press Monit 2002; 7: 215–224.

    Article  PubMed  Google Scholar 

  10. Staessen JA et al. Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population. J Hypertens 2001; 19: 1349–1358.

    Article  CAS  PubMed  Google Scholar 

  11. Petrie JC, O'Brien ET, Littler WA, de Swiet M . Recommendations on blood pressure measurement by a working party of the British Hypertension Society. BMJ 1989; 293: 611–615.

    Article  Google Scholar 

  12. Staessen J et al. Salt intake and blood pressure in the general population: a controlled intervention trial in two towns. J Hypertens 1988; 6: 965–973.

    Article  CAS  PubMed  Google Scholar 

  13. Sahn DJ, DeMaria A, Kisslo J, Weyman A . Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978; 58: 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  14. Devereux RB et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450–458.

    Article  CAS  PubMed  Google Scholar 

  15. Paillard F et al. Genotype–phenotype relationships for the renin–angiotensin–aldosterone system in a normal population. Hypertension 1999; 34: 423–429.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson EA, Deeb S, Walker D, Motulsky AG . The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI–CIII apolipoprotein genes. Am J Hum Genet 1988; 42: 113–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. The SAS Institute. The GENMOD procedure. SAS Online Doc Version 7.1: SAS/STAT. The SAS Institute Inc.: Cary, NC, 2000, pp 1311–1411.

  18. Abecasis GR, Cardon LR, Cookson WOC . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  19. Abecasis GR, Cookson WOC, Cardon LR . Pedigree tests of transmission disequilibrium. Eur J Hum Genet 2000; 8: 545–551.

    Article  CAS  PubMed  Google Scholar 

  20. Willett WC . Balancing life-style and genomics research for disease prevention. Science 2002; 296: 695–698.

    Article  CAS  PubMed  Google Scholar 

  21. Geenen DL, Malhotra A, Scheuer J . Angiotensin II increases cardiac protein synthesis in adult rat heart. Am J Physiol 1993; 265: H238–H243.

    CAS  PubMed  Google Scholar 

  22. Baker KM, Aceto JF . Angiotensin II stimulation of protein synthesis and cell growth in chick cells. Am J Physiol 1990; 259: H610–H618.

    CAS  PubMed  Google Scholar 

  23. Molkentin JD, Olson EN . GATA4: a novel transcriptional regulator of cardiac hypertrophy. Circulation 1997; 96: 3833–3835.

    CAS  PubMed  Google Scholar 

  24. Harrap SB et al. Plasma angiotensin II, predisposition to hypertension, and left ventricular size in healthy young adults. Circulation 1996; 93: 1148–1154.

    Article  CAS  PubMed  Google Scholar 

  25. Corvol P, Persu A, Gimenez-Roqueplo AP, Jeunemaitre X . Seven lessons from two candidate genes in human essential hypertension. Angiotensinogen and epithelial sodium channel. Hypertension 1999; 33: 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  26. Inoue I et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997; 99: 1786–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeunemaitre X et al. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997; 60: 1448–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu X et al. Linkage disequilibrium and haplotype diversity in the genes of the renin–angiotensin system: findings from the family blood pressure program. Genome Res 2003; 13: 173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charchar FJ et al. Y is there a risk to being male? Trends Endocrin Metabol 2003; 14: 163–168.

    Article  CAS  Google Scholar 

  30. Hopkins PN et al. Angiotensinogen genotype affects renal and adrenal responses to angiotensin II in essential hypertension. Circulation 2002; 105: 1921–1927.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan T . Interactions between sodium and angiotensin. Clin Exp Pharmacol Physiol 2001; 28: 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  32. Langenfeld MRW, Schmieder RE . Salt and left ventricular hypertrophy: what are the links? J Hum Hypertens 1995; 9: 909–916.

    CAS  PubMed  Google Scholar 

  33. Luft FC, Fineberg NS, Sloan RS . Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension 1982; 4: 805–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The European Project on Genes in Hypertension was supported by the European Union (contract numbers IC15-CT98-0329-EPOGH and QLG1-CT-2000-01137-EURNETGEN). The study was also sponsored by a special research grant (Onderzoekstoelage OT/99/28) from the Katholieke Universiteit Leuven (Leuven, Belgium), and by the Internationale Wetenschappelijke en Technologische Samenwerking Polen-Vlaanderen (contract number BIL 00/18). Genotyping was supported by research grants from the Bundesministerium for Education, Science and Technology to Eva Brand and Stefan-Martin Herrmann (BMBF 0313040A) and from the Deutsche Forschungsgemeinschaft to Stefan-Martin Herrmann (Graduierten-Kolleg 754, Myokardiale Genexpression und Funktion, Myokardhypertrophie).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J A Staessen.

Appendix

Appendix

Coordination and Committees

Project Coordinator—JA Staessen. Scientific Coordinator—K Kawecka-Jaszcz. Steering Committee—S Babeanu, E Casiglia, J Filipovsky, K Kawecka-Jaszcz, C Nachev, Y Nikitin, J Peleška, JA Staessen. Data Management Committee—T Kuznetsova, JA Staessen, K Stolarz, V Tikhonoff, J-G Wang. Publication Committee—E Casiglia, K Kawecka-Jaszcz, Y Nikitin. Advisory Committee on Molecular Biology—G Bianchi (Milan), E Brand (Berlin), SM Herrmann (Münster), HA Struijker-Boudier (Maastricht). EPOGH-EurNetGen Liaison—A Dominiczak (Glasgow), JA Staessen (Leuven).

EPOGH Centres

A complete list of the EPOGH investigators has been published in Kuznetsova et al.9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, T., Staessen, J., Reineke, T. et al. Context-dependency of the relation between left ventricular mass and AGT gene variants. J Hum Hypertens 19, 155–163 (2005). https://doi.org/10.1038/sj.jhh.1001793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001793

Keywords

This article is cited by

Search

Quick links