Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neutral endopeptidase and angiotensin I converting enzyme insertion/deletion gene polymorphism in humans

Abstract

Neutral endopeptidase (NEP) hydrolyses angiotensins (Ang) I and II and generates angiotensin-(1-7) [Ang-(1-7)]. In humans, the insertion/deletion (I/D) angiotensin-I converting enzyme (ACE) gene polymorphism determined plasma ACE levels by 40%. In rats, a similar polymorphism determines ACE levels which are inversely associated to NEP activity. The objective of this study is to evaluate the relationship between ACE expression and plasma NEP activity in normotensive subjects and in hypertensive patients. In total, 58 consecutive patients with hypertension, evaluated in our Hypertension Clinic, were compared according to their ACE I/D genotypes with 54 control subjects in terms of both plasma ACE activity and NEP activities. Plasma ACE activity was elevated 51 and 70% in both DD ACE groups (normotensives and hypertensives) compared with their respective ID and II ACE groups (P<0.001). A significant effect of the ACE polymorphism and of the hypertensive status on ACE activity was observed (P<0.001). In normotensive DD ACE subjects, NEP activity was 0.30±0.02 U/ml, whereas in the normotensive II ACE and in the normotensive ID ACE subjects NEP activity was increased 65 and 48%, respectively (P<0.001). In the hypertensive DD ACE patients, NEP activity was 0.47±0.03 U/mg. An effect of the I/D ACE genotypes on NEP activity (P<0.04) and an interaction effect between the I/D ACE genotype and the hypertensive status were also observed (P<0.001). These results are consistent with a normal and inverse relationship between the ACE polymorphism and NEP activity in normotensive humans (as is also observed in rats). This normal relationship is not observed in hypertensive patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Turner AJ, Isaac RE, Coates D . The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 2001; 23: 261–269.

    Article  CAS  PubMed  Google Scholar 

  2. Huang H et al. Discrepancy between plasma and lung angiotensin-converting enzyme activity in experimental congestive heart failure. Hypertension 1994; 75: 454–461.

    CAS  Google Scholar 

  3. Corti R et al. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation 2001; 104: 1856–1862.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrario C et al. Counterregulatory actions of angiotensin-(1-7). Hypertension 1997; 30: 535–541.

    Article  CAS  PubMed  Google Scholar 

  5. Chappell M, Iyer S, Diz D, Ferrario C . Antihypertensive effects of angiotensin-(1-7). Braz J Med Biol Res 1998; 31: 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  6. Soubrier F et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 1988; 85: 9386–9390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rigat B et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiret L et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE. Am J Hum Genet 1992; 51: 197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jalil J et al. Prevalence of the angiotensin I converting enzyme insertion/deletion polymorphism, plasma angiotensin converting enzyme activity, and left ventricular mass in normotensive chilean population. Am J Hypertens 1999; 12: 697–704.

    Article  CAS  PubMed  Google Scholar 

  10. Danser J, Schunkert H . Renin–angiotensin system gene polymorphism: potential mechanisms for their association with cardiovascular diseases. Eur J Pharm 2000; 410: 303–316.

    Article  CAS  Google Scholar 

  11. O'Donell CJ et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998; 97: 1766–1772.

    Article  Google Scholar 

  12. Higaki J et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men. The Suita Study. Circulation 2000; 101: 2060–2065.

    Article  CAS  PubMed  Google Scholar 

  13. Vega J et al. Prevalence of hypertension in Valparaiso. Results of the base survey of the CARMEN project (set of measures for the multifactorial reduction of non-transmissible diseases). Rev Med Chile 1999; 127: 729–738.

    CAS  PubMed  Google Scholar 

  14. Rigat C, Hubert C, Corvol P, Soubrier F . PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP 1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res 1992; 20: 1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lindpaintner K et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995; 332: 706–711.

    Article  CAS  PubMed  Google Scholar 

  16. Piquilloud Y, Reinharz A, Roth M . Studies on the angiotensin converting enzyme, with different substrates. Biochim Biophys Acta 1970; 206: 136–142.

    Article  CAS  PubMed  Google Scholar 

  17. Friedland J, Silverstein E . A sensitive fluorimetric assay for serum angiotensin-converting enzyme. Am J Clin Pathol 1976; 66: 416–424.

    Article  CAS  PubMed  Google Scholar 

  18. Jalil JE, Ocaranza MP, Piddo AM, Jalil R . Reproducibility of plasma angiotensin-converting enzyme activity in human subjects determined by fluorimetry with Z-phenylalanine-histidyl-leucine as substrate. J Lab Clin Med 1999; 133: 501–506.

    Article  CAS  PubMed  Google Scholar 

  19. Florentin D, Sassi A, Roques B . A highly sensitive fluorometric assay for “enkephalinase”, a neutral metalloendopeptidase that release tyrosine–glycine–glycine from enkephalins. Anal Biochem 1984; 141: 62–69.

    Article  CAS  PubMed  Google Scholar 

  20. Bradford M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein dye binding. Anal Biochem 1976; 72: 248–252.

    Article  CAS  PubMed  Google Scholar 

  21. Sahn DJ, De Maria A, Kisslo J, Weyman A . Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978; 58: 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  22. Devereux RB et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450–458.

    Article  CAS  PubMed  Google Scholar 

  23. Chen HH, Burnett JC . Natriuretic peptides in the pathophysiology of congestive heart failure. Curr Cardiol Rep 2000; 2: 198–205.

    Article  CAS  PubMed  Google Scholar 

  24. Graf K et al. Regulation and differential expression of neutral endopeptidase 24.11 in human endothelial cells. Hypertension 1995; 26: 230–235.

    Article  CAS  PubMed  Google Scholar 

  25. Erdös EG, Skidgel RA . Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 1989; 3: 145–151.

    Article  PubMed  Google Scholar 

  26. Yamoto K, Chappell MC, Brosnihan KB, Ferrario CM . In vivo metabolism of angiotensin I by neutral endopeptidase (E.C. 3.4.21.11) in spontaneously hypertensive rats. Hypertension 1992; 19: 692–696.

    Article  Google Scholar 

  27. Skidgel RA, Engelbrecht S, Johnson AR, Erdös EG . Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 1984; 5: 769–776.

    Article  CAS  PubMed  Google Scholar 

  28. Lisy O et al. Neutral endopeptidase inhibition potentiates the natriuretic actions of adrenomedullin. Am J Physiol 1998; 275: F410–F414.

    CAS  PubMed  Google Scholar 

  29. Graf K et al. Degradation of bradykinin by neutral endopeptidase 24.11 in cultured human endothelial cells. Eur J Clin Chem Clin Biochem 1993; 31: 267–272.

    CAS  PubMed  Google Scholar 

  30. Blais Jr C et al. Protective effect of omapatrilat, a vasopeptidase inhibitor, on the metabolism of bradykinin in normal and failing human hearts. J Pharmacol Exp Ther 2000; 295: 621–626.

    CAS  PubMed  Google Scholar 

  31. Soleilhac JM et al. Characterization of a soluble form of neutral endopeptidase-24.11 (EC 3.4.24.11) in human serum: enhancement of its activity in serum of underground miners exposed to coal dust particles. Eur J Clin Invest 1996; 26: 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  32. Beaudoin AR, Grondin G . Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Biochim Biophys Acta 1991; 1071: 203–219.

    Article  CAS  PubMed  Google Scholar 

  33. Beldent V et al. Cell surface localization of proteolysis of human endothelial angiotensin I-converting enzyme. Effect of the amino-terminal domain in the solubilization process. J Biol Chem 1995; 270: 28962–28969.

    Article  CAS  PubMed  Google Scholar 

  34. Oliveri C et al. Angiotensin I-converting enzyme modulates neutral endopeptidase activity in the rat. Hypertension 2001; 38: 650–654.

    Article  CAS  PubMed  Google Scholar 

  35. Murphey LJ, Gainer JV, Vaughan DE, Brown NJ . Angiotensin-converting enzyme insertion/deletion polymorphism modulates the human in vivo metabolism of bradykinin. Circulation 2000; 102: 829–832.

    Article  CAS  PubMed  Google Scholar 

  36. Brown NJ, Blais Jr C, Gandhi SK . ACE insertion/deletion genotype affects bradykinin metabolism. J Cardiovasc Pharmacol 1998; 32: 373–377.

    Article  CAS  PubMed  Google Scholar 

  37. Bedir A et al. Angiotensin converting enzyme gene polymorphism and activity in Turkish patients with essential hypertension. Am J Hypertens 1999; 12: 1038–1043.

    Article  CAS  PubMed  Google Scholar 

  38. Chae CU, Lee RT, Rifai N, Ridker PM . Blood pressure and inflammation in apparently healthy men. Hypertension 2001; 38: 399–403.

    Article  CAS  PubMed  Google Scholar 

  39. Drummer OH, Kourtis S, Johnson H . Effect of chronic enalapril treatment on enzymes responsible for the catabolism of angiotensin I and formation of angiotensin II. Biochem Pharmacol 1990; 39: 513–518.

    Article  CAS  PubMed  Google Scholar 

  40. Helin K, Tikkanen I, Hohenthal U, Fyhrquist F . Inhibition of either angiotensin-converting enzyme or neutral endopeptidase induces both enzymes. Eur J Pharmacol 1994; 264: 135–141.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Jalil.

Additional information

Grant support. Fondecyt 1000576, Ecos-Conicyt C99S01 Interchange Program and Fondap 15010006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalil, J., Ocaranza, M., Oliveri, C. et al. Neutral endopeptidase and angiotensin I converting enzyme insertion/deletion gene polymorphism in humans. J Hum Hypertens 18, 119–125 (2004). https://doi.org/10.1038/sj.jhh.1001646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001646

Keywords

This article is cited by

Search

Quick links