Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Review Article

Harmful effects of dietary salt in addition to hypertension

Abstract

In addition to raising the blood pressure dietary salt is responsible for several other harmful effects. The most important are a number which, though independent of the arterial pressure, also harm the cardiovascular system. A high salt intake increases the mass of the left ventricle, thickens and stiffens conduit arteries and thickens and narrows resistance arteries, including the coronary and renal arteries. It also increases the number of strokes, the severity of cardiac failure and the tendency for platelets to aggregate. In renal disease, a high salt intake accelerates the rate of renal functional deterioration. Apart from its effect on the cardiovascular system dietary salt has an effect on calcium and bone metabolism, which underlies the finding that in post-menopausal women salt intake controls bone density of the upper femur and pelvis. Dietary salt controls the incidence of carcinoma of the stomach and there is some evidence which suggests that salt is associated with the severity of asthma in male asthmatic subjects.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Eaton SB, Konner M . Paleolithic nutrition N Eng J Med 1985 312: 283–289

    CAS  Google Scholar 

  2. Multhauf R . Neptune's Gift John's Hopkins University Press: Baltimore 1978

    Google Scholar 

  3. Adshead SAM . Salt and Civilization Macmillan Academic and Professional Ltd: London 1992

    Google Scholar 

  4. Tuomilehto J et al. Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study Lancet 2001 357: 848–851

    CAS  PubMed  Google Scholar 

  5. Langenfeld MR, Schmieder RE . Salt and left ventricular hypertrophy: what are the links? J Hum Hypertens 1995 9: 909–916

    CAS  PubMed  Google Scholar 

  6. Perry IJ . Dietary salt intake and cerebrovascular damage Nutr Metab Cardiovasc Dis 2000 10: 229–235

    CAS  PubMed  Google Scholar 

  7. Schmieder RE, Messerli FH . Hypertension and the heart J Hum Hypertens 2000 14: 597–604

    CAS  PubMed  Google Scholar 

  8. Schmieder RE, Beil AH . Salt intake and cardiac hypertrophy In: Laragh JH, Brenner BM (eds) Hypertension: Pathophysiology, Diagnosis and Management Raven Press: New York 1995 pp 1327–1333

    Google Scholar 

  9. Du Cailar G, Ribstein J, Daures JP, Mimran A . Sodium and left ventricular mass in untreated hypertensive and normotensive subjects Am J Physiol 1992 263: H177–H181

    CAS  PubMed  Google Scholar 

  10. Fields NG, Yuan B, Leenen FHH . NaCl-induced cardiac hypertrophy: cardiac sympathetic activity versus volume load Circ Res 1991 68: 745–755

    CAS  PubMed  Google Scholar 

  11. Kihara M et al. Biochemical aspects of salt-induced pressure-independent left ventricular hypertrophy in rats Heart & Vessels 1985 1: 212–215

    CAS  Google Scholar 

  12. Daniels SD, Meyer RA, Loggie MH . Determinants of cardiac involvement in children and adolescents with essential hypertension Circulation 1990 82: 1243–1248

    CAS  PubMed  Google Scholar 

  13. Schmieder RE, Messerli FH, Garavaglia GG, Nunez BD . Dietary salt intake. A determinant of cardiac involvement in essential hypertension Circulation 1988 78: 951–956

    CAS  PubMed  Google Scholar 

  14. Schmieder RE et al. Sodium intake modulates left ventricular hypertrophy in essential hypertension J Hypertens 1988 6: S148–S150

    CAS  Google Scholar 

  15. Gerdts E, Myking OL, Lund-Johansen P, Omvik P . Factors influencing LVM in hypertensive type-1 diabeticpatients Blood Press 1997 6: 197–202

    CAS  PubMed  Google Scholar 

  16. Frolich ED, Chien Y, Sesoko S . in Pegram BL Relationship between dietary sodium intake, hemodynamics and cardiac mass in SHR & WKY rats Am J Physiol 1993 264: R30–R34

    Google Scholar 

  17. de Simone G et al. Influence of sodium intake on in vivo left ventricular anatomy in experimental renovascular hypertension Am J Physiol 1993 264: H2103–H2110

    CAS  PubMed  Google Scholar 

  18. Huang BS, Leenen FH . Both brain angiotensin II and ‘ouabain’ contribute to sympathoexcitation hypertension in Dahl S rats on high salt intake Hypertension 1998 32: 1028–1033

    CAS  PubMed  Google Scholar 

  19. Kreutz R et al. Induction of cardiac angiotensin I-converting enzyme with dietary NaCl-loading in genetically hypertensive and normotensive rats J Mol Med 1995 73: 243–248

    CAS  PubMed  Google Scholar 

  20. Geenen DL, Malhotra A, Scheuer J . Angiotensin II increases cardiac protein synthesis in adult rat heart Am J Physiol 1993 265: H238–H243

    CAS  PubMed  Google Scholar 

  21. Yu HCM et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats Circulation 1998 98: 2621–2628

    CAS  PubMed  Google Scholar 

  22. Feron O, Salomone S, Godfraind T . Influence of salt loading on the cardiac and renal preproendothelin-1 mRNA expression in stroke-prone spontaneously hypertensive rats Biochem Biophys Res Commun 1995 209: 161–166

    CAS  PubMed  Google Scholar 

  23. Liebson PR et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass inpatients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS) Circulation 1995 91: 698–706

    CAS  PubMed  Google Scholar 

  24. Ferrara LA, de Simone G, Pasanisi F, Mancini M . Left ventricular mass reduction during salt depletion in arterial hypertension Hypertension 1984 6: 755–759

    CAS  PubMed  Google Scholar 

  25. Drayer JIM, Gardin JM, Weber MA . Echocardiographic left ventricular hypertrophy in hypertension Chest 1983 84: 217–221

    CAS  PubMed  Google Scholar 

  26. Lindpaintner K, Sen S . Role of sodium in hypertensive cardiac hypertrophy Circ Res 1985 57: 610–617

    CAS  PubMed  Google Scholar 

  27. Shen S, Young DR . Role of sodium in modulation of myocardial hypertrophy in renal hypertensive rats Hypertension 1986 8: 918–924

    Google Scholar 

  28. Contard F et al. Diuretic effects on cardiac hypertrophy in the stroke prone spontaneously hypertensive rat Cardiovasc Res 1993 27: 429–434

    CAS  PubMed  Google Scholar 

  29. Safar ME, Thuilliez C, Richard V, Benetos A . Pressure-independent contribution of sodium to large artery structure and function in hypertension Cardiovasc Res 2000 46: 269–276

    CAS  PubMed  Google Scholar 

  30. Simon G, Illyes G . Structural vascular changes in hypertension: role of angiotensinll, dietary sodium supplementation, and sympathetic stimulation, alone and in combination in rats Hypertension 2001 37: 255–260

    CAS  PubMed  Google Scholar 

  31. Blacher J et al. Arotic pulse wave velocity as a marker of cardiovascular risk in hypertensivepatients Hypertension 1999 33: 1111–1117

    CAS  PubMed  Google Scholar 

  32. Anttikainen RL, Jousilahti P, Vanhanen H, Tuomilehto J . Excess mortality associated with increased pulse pressure among middle aged men and women is explained by high systolic pressure J Hypertens 2000 18: 417–424

    Google Scholar 

  33. Tobian L . Salt and hypertension. Lessons from animal models that relate to human hypertension Hypertension 1991 17: 52–58

    Google Scholar 

  34. Tobian L, Hanlon S . High sodium chloride diets injure arteries and raise mortality without changing blood pressure Hypertension 1990 15: 900–903

    CAS  PubMed  Google Scholar 

  35. Levy BI, Poitevin P, Duriez M . Sodium, survival and the mechanical properties of the carotid artery in stroke-prone hypertensive rats J Hypertens 1997 15: 251–258

    CAS  PubMed  Google Scholar 

  36. Avolio AP et al. Improved arterial distensibility in normotensive subjects on a low salt diet Arteriosclerosis 1986 6: 166–169

    CAS  PubMed  Google Scholar 

  37. Avolio AP, Deng FQ, Li WQ . Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China Circulation 1985 71: 202–210

    CAS  PubMed  Google Scholar 

  38. Kool MJ, Lusterman FA, Breed JG . The influence of perindopril and the diuretic combination amiloride+hydrochlorothiazide on the vessel wall properties of large arteries in hypertensivepatients J Hypertens 1995 13: 839–848

    CAS  PubMed  Google Scholar 

  39. Simon G, Illyes G, Csiky B . Structural vascular changes in hypertension: role of angiotensin II, dietary sodium supplementation, blood pressure, and time Hypertension 1998 32: 654–660

    CAS  PubMed  Google Scholar 

  40. Lenda DM, Sauls BA, Boegehold MA . Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt Am J Physiol 2000 279: H7–H14

    CAS  Google Scholar 

  41. Boegehold MA . Effect of dietary salt on arteriolar nitric oxide in striated muscle of normotensive rats Am J Physiol 1993 264: H1810–H1816

    CAS  PubMed  Google Scholar 

  42. Boegehold MA . Flow-dependent arteriolar dilation in normotensive rats fed low- or high-salt diets Am J Physiol 1995 269: H1407–H1414

    CAS  PubMed  Google Scholar 

  43. Komiya I et al. An abnormal sodium metabolism in Japanesepatients with essential hypertension, judged by serum sodium distribution, renal function and the renin-aldosterone system J Hypertens 1997 15: 65–72

    CAS  PubMed  Google Scholar 

  44. Gu JW et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells Hypertension 1998 31: 1083–1087

    CAS  PubMed  Google Scholar 

  45. Gu JW, Sartin A, Elam J, Adair TH . Dietary salt induces gene expression of hypertrophy-related factors in cultured human endothelial cells Am J Hypertens 2000 12: F015 (Abstract)

    Google Scholar 

  46. Frolich ED . Risk mechanisms in hypertensive heart disease Hypertension 1999 34: 782–789

    Google Scholar 

  47. Frolich ED, Tarazi RC, Dustan HP . Clinical-physiological correlations in the development of hypertensive heart disease Circulation 1971 44: 446–455

    Google Scholar 

  48. Marcus ML et al. Decreased coronary reserve: a mechanism for angina pectoris inpatients with aortic stenosis and normal coronary arteries N Engl J Med 1982 307: 1362–1367

    CAS  PubMed  Google Scholar 

  49. Houghton JL et al. Relations among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensivepatients without obstructive coronary artery disease J Am Coll Cardiol 1990 15: 43–51

    CAS  PubMed  Google Scholar 

  50. Perry IJ, Beevers DG . Salt intake and stroke: a possible direct effect J Hum Hypertens 1992 6: 23–25

    CAS  PubMed  Google Scholar 

  51. Xie JX, Sasaki S, Joossens JV, Kesteloot H . The relationship between urinary cations obtained from the INTERSALT study and cerebrovascular mortality J Hum Hypertens 1992 6: 17–21

    CAS  PubMed  Google Scholar 

  52. Gow IF et al. The sensitivity of human blood platelets to the aggregating agent ADP during different dietary sodium intakes in healthy men Eur J Clin Pharmacol 1992 43: 635–638

    CAS  PubMed  Google Scholar 

  53. Gow IF et al. High sodium intake increases platelet aggregation in normal females J Hypertens Suppl 1987 5: S243–S246

    CAS  PubMed  Google Scholar 

  54. Nara Y et al. Dietary effect on platelet aggregation in men with and without a family history of essential hypertension Hypertension 1984 6: 339–343

    CAS  PubMed  Google Scholar 

  55. Ashida T et al. Effect of dietary sodium on platelet alpha 2-adrenergic receptors in essential hypertension Hypertension 1985 7: 972–978

    CAS  PubMed  Google Scholar 

  56. McCormick CP, Rauch AL, Buckalew VM . Differential effect of dietary salt on renal growth in Dahl salt-sensitive and salt-resistant rats Hypertension 1989 13: 122–127

    CAS  PubMed  Google Scholar 

  57. Blizard DA et al. The effect of a high salt diet and gender on blood pressure, urinary protein excretion and renal pathology in SHR rats Clin Exp Hypertens A 1991 13: 687–697

    CAS  PubMed  Google Scholar 

  58. Vaskonen T et al. Cardiovascular effects of chronic inhibition of nitric oxide synthesis and dietary salt in spontaneously hypertensive rats Hypertension Res 1997 20: 183–192

    CAS  Google Scholar 

  59. Benstein JA, Feiner HD, Parker M, Dworkin LD . Superiority of salt restriction over diuretics in reducing renal hypertrophy and injury in uninephrectomized SHR Am J Physiol 1990 258: F1675–F1681

    CAS  PubMed  Google Scholar 

  60. Campese VM, Parise M, Karubian F, Bigazzi R . Abnormal renal hemodynamics in black salt-sensitivepatients with hypertension Hypertension 1991 18: 805–812

    CAS  PubMed  Google Scholar 

  61. Bigazzi R et al. Microalbuminuria in salt-sensitivepatients Hypertension 1994 23: 195–199

    CAS  PubMed  Google Scholar 

  62. Mallamaci F, Leonardis D, Bellizzi V, Zoccali C . Does high salt intake cause hyperfiltration inpatients with essential hypertension J Hum Hypertens 1996 10: 157–161

    CAS  PubMed  Google Scholar 

  63. Weir MR, Dengel DR, Behrens MT, Goldberg AP . Salt induced increases in systolic blood pressure affect renal hemodynamics and proteinuria Hypertension 1995 25: 1339–1344

    CAS  PubMed  Google Scholar 

  64. Risdon RA, Sloper JC, de Wardener HE . Relationship between renal function and histological changes found on renal biopsy specimens frompatients with persistent glomerular nephritis Lancet 1968 2: 363–366

    CAS  PubMed  Google Scholar 

  65. Bohle A et al. The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis Pathol Res Pract 1990 186: 135–144

    CAS  PubMed  Google Scholar 

  66. Remuzzi G, Tullio B . Mechanisms of disease: pathophysiology of progressive nephropathies N Engl J Med 1998 339: 1448–1456

    CAS  PubMed  Google Scholar 

  67. Ruggenenti P, Remuzzi G . The role of protein traffic in the progression of renal diseases Annu Rev Med 2000 51: 315–327

    CAS  PubMed  Google Scholar 

  68. Taal MW, Brenner BM . Renoprotective benefits of RAS inhibition: from ACE1 to angiotensin II antagonists Kidney Int 2000 57: 1803–1817

    CAS  PubMed  Google Scholar 

  69. Obata JE et al. Increased expression of components of the renin-angiotensin system in glomeruli of genetically hypertensive rats J Hypertens 2000 18: 1247–1256

    CAS  PubMed  Google Scholar 

  70. Hall JE, Guyton AC, Branda MW . Control of sodium excretion and arterial pressure by intrarenal mechanisms and the renal-angiotensin system. In: Laragh JH, Brenner BM. (eds). Hypertension: Pathophysiology, Diagnosis and Management Raven Press Ltd: New York 1995

    Google Scholar 

  71. Haugen EN, Croatt AJ, Nath KA . Angiotensin II induces renal oxidant stress in vivo and in vitro Kidney Int 2000 58: 144–152

    CAS  PubMed  Google Scholar 

  72. Haugen E, Nath KA . The involvement of oxidative stress in the progression of renal injury Blood Purif 1999 17: 58–65

    CAS  PubMed  Google Scholar 

  73. Lincoln J, Hoyle CHV, Burnstock G . Nitric Oxide in Health and Disease Cambridge University Press: Cambridge 1997

    Google Scholar 

  74. Navar LG, Imig JD, Zou L, Wang CT . Intrarenal production of angiotensin II Semin Nephrol 1997 17: 412–422

    CAS  PubMed  Google Scholar 

  75. Gansevoort RT, de Zeeuw D, de Jong PE . Long-term benefits of the antiproteinuric effect of angiotensin-converting enzyme inhibition of nondiabetic renal disease Am J Kidney Dis 1993 22: 202–206

    CAS  PubMed  Google Scholar 

  76. Heeg JE, de Jong PE, van der Hem GK, de Zeeuw D . Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril Kidney Int 1989 36: 272–279

    CAS  PubMed  Google Scholar 

  77. Cianciaruso B et al. Salt intake and renal outcome inpatients with progressive renal disease Miner Electrolyte Metab 1998 24: 296–301

    CAS  PubMed  Google Scholar 

  78. Waldron ATJ, Casley D, Jerums G, Cooper ME . Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes Diabetes 1997 46: 19–24

    PubMed  Google Scholar 

  79. Dworkin LD, Bernstein JA, Tolbert E, Feiner HD . Salt restriction inhibits renal growth and stabilizes injury in rats with established renal disease J Am Soc Nephrol 1996 7: 437–442

    CAS  PubMed  Google Scholar 

  80. Allen TJ et al. Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes Diabetes 1997 46: 19–24

    CAS  PubMed  Google Scholar 

  81. Peters H, Border WA, Noble NA . Targeting TGF-beta overexpression in renal disease: maximizing the antifibrotic action of angiotensin II blockade Kidney Int 1998 54: 1570–1580

    CAS  PubMed  Google Scholar 

  82. Marinides GN, Groggel GC, Cohen AH . Failure of angiotensin converting enzyme inhibition to affect the course of chronic puromycin aminonucleoside nephropathy Am J Pathol 1987 129: 394–401

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bianchi S, Bigazzi R, Campese VM . Microalbuminuria in essential hypertension: significance, pathophysiology and therapeutic implications Am J Kid Dis 1999 34: 973–995

    CAS  PubMed  Google Scholar 

  84. Bigazzi R, Bianchi S, Baldari D, Campese VM . Microalbuminuria predicts cardiovascular events and renal insufficiency inpatients with essential hypertension predicts J Hypertens 1998 16: 1325–1333

    CAS  PubMed  Google Scholar 

  85. Bakris GL, Smith A . Effects of sodium intake on albumin excretion inpatients with diabetic nephropathy treated with long-acting calcium antagonists Ann Intern Med 1996 125: 201–204

    CAS  PubMed  Google Scholar 

  86. van der Klerj FG et al. Angiotensin converting enzyme insertion/deletion polymorphism and short-term renal response to ACE inhibition: role of sodium status Kidney Int 1997 63: S23–S26

    Google Scholar 

  87. Buter H et al. The blunting of the antiproteinuric efficacy of ACE inhibition by high sodium intake can be restored by hydrochlorothiazide Nephrol Dial Transplant 1998 13: 1682–1685

    CAS  PubMed  Google Scholar 

  88. Massey LK, Whiting SJ . Dietary salt, urinary calcium and bone loss J Bone Min Ref 1996 11: 731–736

    CAS  Google Scholar 

  89. Itoh R, Suyama Y . Sodium excretion in relation to calcium and hydroxyproline excretion in healthy Japanese population Am J Clin Nutr 1996 63: 735–740

    CAS  PubMed  Google Scholar 

  90. Goulding A, Everitt HE, Cooney JM, Spears GFS . Sodium and osteoporosis In: Truswell AS, Walqvist ML (eds) Recent Advances in Clinical Nutrition John Libbey: London 1986 pp 99–108

    Google Scholar 

  91. MacGregor GA, Cappuccio FP . The kidney and essential hypertension: a link to osteoporosis J Hypertens 1993 11: 781–785

    CAS  PubMed  Google Scholar 

  92. McParland BE, Goulding A, Campbell AJ . Dietary salt affects biochemical markers of resorption and formation of bone in elderly women Br Med J 1989 299: 834–835

    CAS  Google Scholar 

  93. Lian JB, Gundberg CM . Osteocalcin. Biochemical considerations and clinical applications Clin Orthop 1988 226: 267–269

    CAS  Google Scholar 

  94. Saggar-Malik AK, Markandu ND, MacGregor GA, Cappucio FP . Case report. Moderate salt restriction for the management of hypertension and hypercalcurea J Hum Hypertens 1996 10: 811–813

    CAS  PubMed  Google Scholar 

  95. Matkovic V et al. Urinary calcium, sodium, and bone mass of young females Am J Clin Nutr 1995 62: 417–425

    CAS  PubMed  Google Scholar 

  96. Zarkadas M et al. Sodium chloride supplementation and urinary calcium excretion in postmenopausal women Am J Clin Nutr 1989 50: 1088–1094

    CAS  PubMed  Google Scholar 

  97. Devine A et al. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women Am J Clin Nutr 1995 62: 740–745

    CAS  PubMed  Google Scholar 

  98. Greendale GA et al. Dietary sodium and bone mineral density: results of a 16 year follow-up study J Am Geriatr Soc 1994 42: 1050–1055

    CAS  PubMed  Google Scholar 

  99. Nordin BEC, Polley KJ . Metabolic consequences of the menopause: a cross sectional, longitudinal and intervention study on 557 normal postmenopausal women Calcif Tissue Int 1987 41: S1–S59

    PubMed  Google Scholar 

  100. Golabek B, Slownik M, Grabowski M . Importance of dietary sodium in the hypercalciuria syndrome and nephrolithiasis Polski Merkuriusz Lekarski 2000 8: 174–177

    CAS  PubMed  Google Scholar 

  101. Jungers P, Daudon M, Hennequin C, Lacour B . Correlation between protein and sodium intake and calciuria in calcium lithiasis Nephrologie 1993 14: 287–290

    CAS  PubMed  Google Scholar 

  102. Muldowney FP, Freaney R, Moloney MF . Importance of dietary sodium in the hypercalciuria syndrome Kidney Int 1982 22: 292–296

    CAS  PubMed  Google Scholar 

  103. Adams JS, Wahl TO, Lukert BP . Effects of hydrochloro-thiazide and dietary sodium restriction on calcium metabolism in corticosteroid treatedpatients Metab Clin Exper 1981 303: 217–221

    Google Scholar 

  104. Goulding A, Campbell DR . Effects of oral loads of sodium chloride on bone composition in growing rats consuming ample dietary calcium Miner Electrolyte Metab 1984 10: 58–62

    CAS  PubMed  Google Scholar 

  105. Chan EL, Swaminathan R . Calcium metabolism and bone calcium content in normal and oophorectomized rats consuming various levels of saline for 12 months J Nutrit 1998 128: 633–639

    CAS  PubMed  Google Scholar 

  106. Yamakawa H et al. Disturbed calcium metabolism in offspring of hypertensive parents Hypertension 1992 19: 528–534

    CAS  PubMed  Google Scholar 

  107. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA . High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group Lancet 1999 354: 971–975

    CAS  PubMed  Google Scholar 

  108. Cirillio M et al. On the pathogenetic mechanism of hypercalciuria in genetically hypertensive rats of the Milan strain Am J Hypertens 1989 2: 741–746

    Google Scholar 

  109. Izawa Y, Sagara K, Kadata T, Makita T . Bone disorders in spontaneously hypertensive rats Calcif Tissue Int 1985 37: 605–607

    CAS  PubMed  Google Scholar 

  110. Wasnich R, Davis J, Ross P, Vogel J . Effect of thiazide on rates of bone mineral loss: a longitudinal study Br Med J 1990 301: 1303–1305

    CAS  Google Scholar 

  111. LeCroix AZ et al. Thiazide diuretic agents and the incidence of hip fracture N Engl J Med 1990 322: 286–290

    Google Scholar 

  112. Cappuccio FP, Strazzullo P, Mancini M . Kidney stones and hypertension: population based study of an independent clinical association Br Med J 1990 300: 1234–1236

    CAS  Google Scholar 

  113. Cirillo M, Laurenzi M . Elevated blood pressure and positive history of kidney stones: results from a population-based study J Hypertens 1988 6: 485–486

    Google Scholar 

  114. Wexler BC, McMuirtry JP . Kidney and bladder calculi in spontaneously hypertensive rats Br J Exp Pathol 1981 62: 369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Joossens JV et al. Dietary salt, nitrate and stomach cancer mortality in 24 countries. European Cancer Prevention (ECP) and the INTERSALT Cooperative Research Group Int J Epidemiol 1996 25: 494–504

    CAS  PubMed  Google Scholar 

  116. Fox JG et al. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice Cancer Res 1999 59: 4823–4828

    CAS  PubMed  Google Scholar 

  117. Watanabe H et al. Effects of sodium chloride and ethanol on stomach tumorigenesis in ACI rats treated with N-methanol-N-nitro-N-nitrosoguanidine: a quant-itative morphometric approach Jpn J Cancer Res 1992 83: 588–593

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Palli D . Epidemiology of gastric cancer: an evaluation of available evidence J Gastroenterol 2000 35: 84–89

    PubMed  Google Scholar 

  119. Burney P . A diet rich in sodium may potentiate asthma. Epidemiological evidence for a new hypothesis Chest 1987 91: 143S–148S

    CAS  PubMed  Google Scholar 

  120. Burney PGJ et al. Response to inhaled histamine and 24 hour sodium excretion Br Med J 1986 292: 1483–1486

    CAS  Google Scholar 

  121. Burney PG et al. Effect of changing dietary sodium on the airway response to histamine Thorax 1989 44: 36–41

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lieberman D, Heimer D . Effect of dietary sodium on the severity of bronchial asthma Thorax 1992 47: 360–362

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Carey OJ, Locke C, Cookson JB . Effect of alterations of dietary sodium on the severity of asthma in men Thorax 1993 48: 714–718

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Britton J et al. Dietary sodium intake and the risk of airway hyperreactivity in a random adult population Thorax 1994 49: 875–880

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Devereux G et al. Effect of dietary sodium on airways responsiveness and its importance in the epidemiology of asthma: an evaluation in three areas of northern England Thorax 1995 50: 941–947

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Pistelli R et al. Respiratory symptoms and bronchial responsiveness are related to dietary salt intake and urinary potassium excretion in male children Eur Respir J 1993 6: 517–522

    CAS  PubMed  Google Scholar 

  127. Sparrow D, O'Connor GT, Rosner B, Weiss ST . Methacholine airway responsiveness and 24-hour urine excretion of sodium and potassium. The Normative Aging Study Am Rev Respir Dis 1991 144: 722–725

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H E de Wardener.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Wardener, H., MacGregor, G. Harmful effects of dietary salt in addition to hypertension. J Hum Hypertens 16, 213–223 (2002). https://doi.org/10.1038/sj.jhh.1001374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001374

Keywords

  • dietary salt
  • left ventricular mass
  • conduit and resistance arteries
  • strokes
  • renal function
  • bone mass

Further reading

Search

Quick links