pleasure of pointing out that their chief hierophant, the late Prof. Winckler, got most of his astronomy, on which he based his theory, all wrong. His criticism is all the more effective for the studious moderation of his language.

So the book ends, with the final abolition of an absurdity comparable only to that other absurdity, Winckler's *Musri* theory, which was first exploded in the columns of NATURE some years ago (September 25, 1902). The said theory, so far as we can see, is not even mentioned by Prof. King in his book, so dead is it and buried.

So critical common-sense triumphs over nonsense, and true scientific knowledge increases. And Prof. King's book is a landmark of such progress in Babylonian studies, besides giving the general reader an admirable presentment of a most interesting period of ancient history. Its illustrations are good and well chosen: we show two of the photographs of the ruins at Borsippa and Babylon. H. H.

DR. BENJAMIN WILLIAMSON, F.R.S.

THERE has just died at his residence in Dublin Dr. Benjamin Williamson, F.R.S., who was for sixty-three years a fellow of Trinity College. Dr. Williamson was born at Mallow, in the county of Cork, in 1827, and entered Trinity College from Kilkenny College in 1843. In 1852 he was elected to a fellowship of Trinity College, but owing to the stagnation of promotion among the fellows, due to the abolition of the obligations of celibacy and of taking Holy Orders, he did not become a tutor until many years afterwards. The intervening years were not, however, wasted, and Williamson quickly earned a considerable local reputation as a lecturer who was able to estimate the capacity of his hearers and did not endeavour to teach them what they were unable to learn. In 1872 he published his first work, a "Treatise on the Differential Calculus," which was followed in 1874 by his "Integral Calculus," both of which have run into many editions and have been used all over the English-speaking world. In 1879 he was elected a fellow of the Royal Society, and in 1884 he became professor of natural philosophy in Trinity College. In the latter year he published, along with Dr. Tarleton, a treatise on dynamics, and in 1893 appeared his last publication, "The Mathematical Theory of Stress and Strain." The articles "Infinitesimal Calculus," "Maclaurin," and "Variations, Calculus of," in the ninth edition of the "Encyclopædia Britannica" are also due to him.

Williamson's personality was one of the most delightful, and his rooms in college in the 'eighties were the place of hospitality which many an Englishman, sent for his sins to govern Ireland, remembered with pleasure. The human side of Williamson was always turned towards his fellows, and his mind was always ready to receive suggestions on which his generosity could act. When, in 1897, he became a member of the governing

NO. 2411, VOL. 96

body of the college, his ripe judgment and his wide acquaintance began at once to be appreciated by his colleagues. The magnificent new laboratories for physics and botany are a portion only of the fruit of his efforts. In matters of learning he was free from prejudice, and proposals for the founding of new chairs or the improving of old found in him always a ready support. Until a couple of years ago he filled with great dignity the honourable office of vice-provost of the college, and it was only with the greatest reluctance that he was compelled by weakness of the body to abandon cares from which his mind did not recoil. The fate of those who by living too long outlive all their friends was not his, for his genial presence and the freshness of his mind made friends for him everywhere. His death is mourned by all who knew him. S. B. K.

COUNT SOLMS-LAUBACH, For.Mem.R.S.

BY the death of Hermann, Graf zu Solms-Laubach, on November 25, 1915, Germany has lost the most distinguished of her botanists and the world of science one of its most impressive figures. The sad news was communicated to this country through the Swedish palæontologist, Prof. Nathorst, of Stockholm.

Count Solms was born on December 23, 1842, and had thus nearly completed his seventy-third year. He came of one of the most ancient of German families, who were sovereign in their own domains down to the year 1806. He himself devoted his life wholly to science, holding the professorship of botany first at Göttingen and afterwards at Strasburg. He resigned the latter post a few years ago, but continued to live in the town, surrounded by his university friends.

His work extended to every department of botany. Beginning with an important series of researches on parasitic phanerogams, he subsequently monographed several natural orders, including the screw-pines. His interest in the morphology of flowering plants continued in later years; in 1900 he described the remarkable Crucifer, *Capsella Hegeri*, with indehiscent fruits, regarding it as a mutant of the common *C. Bursa pastoris*. He was always interested in variation, and carried out important investigations on the history of cultivated plants, such as the fig, the papaw, wheat, tulips, and strawberries.

In embryology, he showed that in certain monocotyledons the growing point of the embryo is terminal, as in dicotyledons.

In addition to the flowering plants, his systematic researches extended to every class of cryptogams. One of his most remarkable works in this field is his monograph of the Acetabulariaceæ, a family of calcareous Algæ with an ancient fossil history. This was published in 1895 in the Transactions of the Linnean Society, and was his only paper written in English. His book on the "Principles of Plant Geography" (1905) treats in an original manner of the leading conceptions in this great subject.