The geographer, speaking specially of the sandhill, says :—"The hill of sounding sand stretches 80 li east and west and 40 li north and south. It reaches a height of 500 ft. The whole mass is entirely constituted of pure sand. In the height of summer the sand gives out sounds of itself, and if trodden by men or horses, the noise is heard 10 li away. At festivals people clamber up and rush down again in a body, which causes the sand to give a loud rumbling sound like thunder. Yet when you look at it next morning the hill is just as steep as before."

Mr. Lionel Giles, from whose translation of the Tun-Huang-Lu these extracts are made, mentions that this sounding sandhill is referred to in another old Chinese book, the Wu Tai Shih.

JOSEPH OFFORD. 94 Gloucester Road, South Kensington, S.W.

The Green Flash.

I CAN confirm Dr. Schuster's observation of the green flash at sunrise, as in September last I saw a green segment herald the sun as it rose from the sea into a sky which was free from atmospheric glare (see the Observatory, December, 1914). Observations had previously been made at sunset, in one of which the eye was unquestionably fatigued, and the green flash was seen upon turning away from the sun at the instant after sunset. In a later sunset experiment precautions were taken to prevent retinal fatigue, and again the flash was seen.

My opinion is confirmed by Prof. Porter's experiment that "the reason why doubt has been cast upon records of the green flash is that the colour may arise in two different ways (complementary colour due to retinal fatigue, or dispersion by the atmosphere), and that the observer has not always been careful to avoid retinal fatigue, as was the case in my first (sunset) observation."

My observation, No. 2 (loc. cit.), is also in agreement with Dr. Schuster's experience, that with a very red sun no flash is to be seen.

W. GEOFFREY DUFFIELD. University College, Reading, March 6.

Measurements of Medieval English Femora. As the Editor of NATURE has insisted upon the great pressure at present upon his space I propose to reply to Dr. Parsons's letter, in the issue of March 11, adequately elsewhere. Galton Laboratory, March 15.

THE PRINCIPLE OF SIMILITUDE.

I HAVE often been impressed by the scanty attention paid even by original workers in physics to the great principle of similitude. It happens not infrequently that results in the form of "laws" are put forward as novelties on the basis of elaborate experiments, which might have been predicted a priori after a few minutes' consideration. However useful verification may be, whether to solve doubts or to exercise students, this seems to be an inversion of the natural order. One reason for the neglect of the principle may be that, at any rate in its applications to particular cases, it does not much interest mathe-On the other hand, engineers, who maticians. might make much more use of it than they have done, employ a notation which tends to obscure it. I refer to the manner in which gravity is treated. When the question under consideration depends essentially upon gravity, the symbol of gravity (g) | square of the diameter. NO. 2368, VOL. 95]

makes no appearance, but when gravity does not enter into the question at all, g obtrudes itself conspicuously.

I have thought that a few examples, chosen almost at random from various fields, may help to direct the attention of workers and teachers to the great importance of the principle. The statement made is brief and in some cases inadequate, but may perhaps suffice for the purpose. Some foreign considerations of a more or less obvious character have been invoked in aid. In using the method practically, two cautions should be borne in mind. First, there is no prospect of determining a numerical coefficient from the principle of similarity alone; it must be found if at all, by further calculation, or experimentally. Secondly, it is necessary as a preliminary step to specify clearly all the quantities on which the desired result may reasonably be supposed to depend, after which it may be possible to drop one or more if further consideration shows that in the circumstances they cannot enter. The following, then, are some conclusions, which may be arrived at by this method :--

Geometrical similarity being presupposed here as always, how does the strength of a bridge depend upon the linear dimension and the force of gravity? In order to entail the same strains, the force of gravity must be inversely as the linear dimension. Under a given gravity the larger structure is the weaker.

The velocity of propagation of periodic waves on the surface of deep water is as the square root of the wave-length.

The periodic time of liquid vibration under gravity in a deep cylindrical vessel of any section is as the square root of the linear dimension.

The periodic time of a tuning-fork, or of a Helmholtz resonator, is directly as the linear dimension.

The intensity of light scattered in an otherwise uniform medium from a small particle of different refractive index is inversely as the fourth power of the wave-length.

The resolving power of an object-glass, measured by the reciprocal of the angle with which it can deal, is directly as the diameter and inversely as the wave-length of the light.

The frequency of vibration of a globe of liquid, vibrating in any of its modes under its own gravitation, is independent of the diameter and directly as the square root of the density.

The frequency of vibration of a drop of liquid, vibrating under capillary force, is directly as the square root of the capillary tension and inversely as the square root of the density and as the $1\frac{1}{2}$ power of the diameter.

The time-constant (*i.e.*, the time in which a current falls in the ratio e: I) of a linear conducting electric circuit is directly as the inductance and inversely as the resistance, measured in electro-magnetic measure.

The time-constant of circumferential electric currents in an infinite conducting cylinder is as the square of the diameter.