Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth

Abstract

Objective:

Cardiovascular peptides such as angiotensin II (Ang II) and atrial natriuretic peptide (ANP) have metabolic effects on adipose cells. These peptides might also regulate adipocyte proliferation and visceral adipose tissue (VAT) expansion. Well-differentiated and stabilized primary cultures of human visceral mature adipocytes (MA) and in vitro-differentiated preadipocytes (DPA) were used as a model to study regulation of VAT expansion.

Methods:

Adipocyte differentiation was evaluated by Oil Red O staining and antiperilipin antibodies. MA and DPA from intra- and retro-peritoneal depots were treated with increasing Ang II (with or without valsartan, a highly selective, competitive, ‘surmountable’ AT1 antagonist devoid of peroxisome proliferator-activated receptor γ agonistic activity) or ANP concentrations. Cell counts and bromodeoxyuridine incorporation were used to evaluate proliferation. Apoptosis was evaluated by Hoechst 33342 staining. 8-Bromo cyclic guanosine monophosphate (8Br-cGMP) was used to investigate ANP effects, and real-time PCR to evaluate Ang II and ANP receptors' expression.

Results:

Cell proliferation was progressively stimulated by increasing Ang II concentrations (starting at 10−11 M) and inhibited by ANP (already at 10−13 M) in both MA and DPA. Co-incubation with increasing Ang II concentrations and valsartan indicated that Ang II effects were AT1-mediated. Indeed, AT2 receptors were not expressed. Valsartan alone slightly inhibited basal proliferation indicating an autocrine/paracrine growth factor-like effect of endogenous, adipocyte-derived Ang II. 8Br-cGMP experiments indicated that the effects of ANP were mediated by the guanylyl cyclase type A receptor.

Conclusion:

A cell-culture model to study VAT growth showed stimulation by Ang II and inhibition by ANP at physiological concentrations. Because similar effects are likely to occur in vivo, Ang II and ANP might be important modulators of VAT expansion and associated metabolic and cardiovascular consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al., American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898–918.

    Article  PubMed  Google Scholar 

  2. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Panel III criteria for the metabolic syndrome. Diabetes 2004; 53: 2087–2094.

    Article  CAS  PubMed  Google Scholar 

  3. Aneja A, El-Atat F, McFarlane SI, Sowers JR . Hypertension and obesity. Recent Progr Horm Res 2004; 59: 169–205.

    Article  CAS  PubMed  Google Scholar 

  4. Engeli S, Negrel R, Sharma AM . Physiology and pathophysiology of the adipose tissue renin–angiotensin system. Hypertension 2000; 35: 1270–1277.

    Article  CAS  PubMed  Google Scholar 

  5. Lafontan M, Moro C, Sengenes C, Galitzky J, Crampes F, Berlan M . An unsuspected metabolic role for atrial natriuretic peptides: the control of lipolysis, lipid mobilization, and systemic nonesterified fatty acids levels in humans. Arterioscler Thromb Vasc Biol 2005; 25: 2032–2042.

    Article  CAS  PubMed  Google Scholar 

  6. Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Franke G et al. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J Clin Endocrinol Metab 2005; 90: 3622–3628.

    Article  CAS  PubMed  Google Scholar 

  7. Jones BH, Standridge MK, Moustaid N . Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997; 138: 1512–1519.

    Article  CAS  PubMed  Google Scholar 

  8. Darimont C, Vassaux G, Ailhaud G, Negrel R . Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 1994; 135: 2030–2036.

    Article  CAS  PubMed  Google Scholar 

  9. Crandall DL, Armellino DC, Busler DE, McHendry-Rinde B, Kral JG . Angiotensin II receptors in human preadipocytes: role in cell cycle regulation. Endocrinology 1999; 140: 154–158.

    Article  CAS  PubMed  Google Scholar 

  10. Saint-Marc P, Kozak LP, Ailhaud G, Darimont C, Negrel R . Angiotensin II as a trophic factor of white adipose tissue: stimulation of adipose cell formation. Endocrinology 2001; 142: 487–492.

    Article  CAS  PubMed  Google Scholar 

  11. Sugihara H, Yonemitsu N, Miyabara S, Toda S . Proliferation of unilocular fat cells in the primary culture. J Lipid Res 1987; 28: 1038–1045.

    CAS  PubMed  Google Scholar 

  12. Zhang HH, Kumar S, Barnett AH, Eggo MC . Ceiling culture of mature human adipocytes: use in studies of adipocyte functions. J Endocrinol 2000; 164: 119–128.

    Article  CAS  PubMed  Google Scholar 

  13. Gillespie EL, White CM, Kardas M, Lindberg M, Coleman CI . The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care 2005; 28: 2261–2266.

    Article  CAS  PubMed  Google Scholar 

  14. Abuissa H, Jones PG, Marso SP, O'Keefe Jr JH . Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 2005; 46: 821–826.

    Article  CAS  PubMed  Google Scholar 

  15. Matsushita K, Wu Y, Okamoto Y, Pratt RE, Dzau VJ . Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006; 48: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  16. Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM . Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 2002; 51: 1699–1707.

    Article  CAS  PubMed  Google Scholar 

  17. Potter LR, Abbey-Hosch S, Dickey DM . Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27: 47–72.

    Article  CAS  PubMed  Google Scholar 

  18. Silberbach M, Roberts Jr CT . Natriuretic peptide signaling: molecular and cellular pathways to growth regulation. Cell Signal 2001; 13: 221–231.

    Article  CAS  PubMed  Google Scholar 

  19. Sengenes C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumie A, Lafontan M et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol Regul Integr Comp Physiol 2002; 283: R257–R265.

    Article  CAS  PubMed  Google Scholar 

  20. Souza SC, de Vargas LM, Yamamoto MT, Lien P, Franciosa MD, Moss LG et al. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor aloha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem 1998; 273: 24665–24669.

    Article  CAS  PubMed  Google Scholar 

  21. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.

    Article  CAS  PubMed  Google Scholar 

  22. Schling P, Schafer T . Human adipose tissue cells keep tight control on the angiotensin II levels in their vicinity. J Biol Chem 2002; 277: 48066–48075.

    Article  CAS  PubMed  Google Scholar 

  23. Richards AM, McDonald D, Fitzpatrick MA, Nicholls MG, Espiner EA, Ikram H et al. Atrial natriuretic hormone has biological effects in man at physiological plasma concentrations. J Clin Endocrinol Metab 1988; 67: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  24. Dessi-Fulgheri P, Sarzani R, Serenelli M, Tamburrini P, Spagnolo D, Giantomassi L et al. Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. Hypertension 1999; 33: 658–662.

    Article  CAS  PubMed  Google Scholar 

  25. Gratzner HG . Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 1982; 218: 474–475.

    Article  CAS  PubMed  Google Scholar 

  26. Sarzani R, Fallo F, Dessi-Fulgheri P, Pistorello M, Lanari A, Rappelli A et al. Local renin–angiotensin system in human adrenals and aldosteronomas. Hypertension 1992; 19: 702–707.

    Article  CAS  PubMed  Google Scholar 

  27. Crandall DL, Herzlinger HE, Saunders BD, Armellino DC, Kral JG . Distribution of angiotensin II receptors in rat and human adipocytes. J Lipid Res 1994; 35: 1378–1385.

    CAS  PubMed  Google Scholar 

  28. Entenmann G, Hauner H . Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol 1996; 270: C1011–C1016.

    Article  CAS  PubMed  Google Scholar 

  29. Janke J, Schupp M, Engeli S, Gorzelniak K, Boshmann M, Sharma AM et al. Angiotensin type 1 receptor antagonists induce human in-vitro adipogenesis through peroxisome proliferator-activated receptor-γ activation. J Hypertens 2006; 24: 1809–1816.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma AM, Janke J, Gorzelniak K, Engeli S, Luft FC . Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertension 2002; 40: 609–611.

    Article  CAS  PubMed  Google Scholar 

  31. Bouzegrhane F, Thibault G . Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 2002; 53: 304–312.

    Article  CAS  PubMed  Google Scholar 

  32. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR . Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 1996; 93: 12490–12495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PW et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004; 109: 594–600.

    Article  CAS  PubMed  Google Scholar 

  34. Dessi-Fulgheri P, Sarzani R, Rappelli A . Role of the natriuretic peptide system in lipogenesis/lipolysis. Nutr Metab Cardiovasc Dis 2003; 13: 244–249.

    Article  CAS  PubMed  Google Scholar 

  35. Sarzani R, Dessi-Fulgheri P, Paci MV, Espinosa E, Rappelli A . Expression of natriuretic peptide receptors in human adipose and other tissues. J Endocrinol Invest 1996; 19: 581–585.

    Article  CAS  PubMed  Google Scholar 

  36. Dessi-Fulgheri P, Sarzani R, Tamburrini P, Moraca A, Espinosa E, Cola G et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 1997; 15: 1695–1699.

    Article  CAS  PubMed  Google Scholar 

  37. Sarzani R, Dessi-Fulgheri P, Salvi F, Serenelli M, Spagnolo D, Cola G et al. A novel promoter variant of the natriuretic peptide clearance receptor gene is associated with lower atrial natriuretic peptide and higher blood pressure in obese hypertensives. J Hypertens 1999; 17: 1301–1305.

    Article  CAS  PubMed  Google Scholar 

  38. Sarzani R, Strazzullo P, Salvi F, Iacone R, Pietrucci F, Siani A et al. Natriuretic peptide clearance receptor alleles and susceptibility to abdominal adiposity. Obes Res 2004; 12: 351–356.

    Article  CAS  PubMed  Google Scholar 

  39. Johnston CI, Hodsman PG, Kohzuki M, Casley DJ, Fabris B, Phillips PA . Interaction between atrial natriuretic peptide and the renin angiotensin aldosterone system: endogenous antagonists. Am J Med 1989; 87: 24S–28S.

    Article  CAS  PubMed  Google Scholar 

  40. Goossens GH, Blaak EE, Arner P, Saris WH, van Baak MA . Angiotensin II: a hormone that affects lipid metabolism in adipose tissue. Int J Obes (Lond) 2007; 31: 382–384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Italian University and Research Ministry (MiUR) and the University of Ancona ‘Politecnica delle Marche’. We are indebted to Dr Liana Spazzafumo, from the Statistic and Biometry Center, Department of Gerontological Research, National Institute for Research and Care on Aging (INRCA), Ancona, Italy, for statistical advice and with Professor Saverio Cinti and Dr Maria Cristina Zingaretti, Institute of Normal Human Morphology, University of Ancona—‘Politecnica delle Marche’, Ancona, Italy, for the help in the immunohistochemistry procedures. We also thank Mr Giorgio Tesei and Mrs Leda Rinaldi, in the year of their retirement, for the technical support in this as well as in many other studies performed in the last 20 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Sarzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarzani, R., Marcucci, P., Salvi, F. et al. Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth. Int J Obes 32, 259–267 (2008). https://doi.org/10.1038/sj.ijo.0803724

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803724

Keywords

This article is cited by

Search

Quick links