Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Obese men respond to cognitive but not to catabolic brain insulin signaling

Abstract

Context and objective:

Insulin acts in the brain to reduce food intake and body weight and is considered a major adiposity signal in energy homeostasis. In normal-weight men, intranasal insulin administration reduces body fat and improves declarative memory. The present experiments aimed to generalize these findings to obese patients, with a view to evaluate the therapeutic potential of the compound.

Design, subjects and measurements:

Insulin and placebo, respectively, were intranasally administered four times a day (amounting to 160 IU day−1) over 8 weeks to two groups of 15 obese men each.

Results:

Contrasting with the catabolic effects in normal-weight men, insulin treatment did not induce any significant reduction of body weight (P>0.50) and body fat (P>0.44) in the obese subjects. However, in accordance with the effects in normal-weight men, declarative memory and mood were improved (P<0.05) and hypothalamic–pituitary–adrenal axis activity as assessed by circulating ACTH (P<0.01) and cortisol levels (P<0.04) was reduced.

Conclusions:

Our results indicate that in obese men, intranasal insulin is functionally active in the central nervous system but fails to affect the neuronal networks critically involved in body weight regulation. We conclude that obesity in men is associated with central nervous resistance to the adiposity signal insulin. This defect likely contributes to the persistence of obesity in spite of elevated levels of circulating insulin in obese patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Yach D, Stuckler D, Brownell KD . Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006; 12: 62–66.

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz MW, Porte Jr D . Diabetes, obesity, and the brain. Science 2005; 307: 375–379.

    Article  CAS  PubMed  Google Scholar 

  3. Woods SC, Lotter EC, McKay LD, Porte Jr D . Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979; 282: 503–505.

    Article  CAS  PubMed  Google Scholar 

  4. Air EL, Benoit SC, Blake Smith KA, Clegg DJ, Woods SC . Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol Biochem Behav 2002; 72: 423–429.

    Article  CAS  PubMed  Google Scholar 

  5. Park CR, Seeley RJ, Craft S, Woods SC . Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 2000; 68: 509–514.

    Article  CAS  PubMed  Google Scholar 

  6. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL . Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001; 74: 270–280.

    Article  CAS  PubMed  Google Scholar 

  7. Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 2006; 27: 451–458.

    Article  CAS  PubMed  Google Scholar 

  8. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL et al. Intranasal insulin improves memory in humans: superiority of insulin as part. Neuropsychopharmacology 2007; 32: 239–243.

    Article  CAS  PubMed  Google Scholar 

  9. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 2004; 29: 1326–1334.

    Article  CAS  PubMed  Google Scholar 

  10. Baura GD, Foster DM, Porte Jr D, Kahn SE, Bergman RN, Cobelli C et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest 1993; 92: 1824–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stein LJ, Dorsa DM, Baskin DG, Figlewicz DP, Porte Jr D, Woods SC . Reduced effect of experimental peripheral hyperinsulinemia to elevate cerebrospinal fluid insulin concentrations of obese Zucker rats. Endocrinology 1987; 121: 1611–1615.

    Article  CAS  PubMed  Google Scholar 

  12. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW . Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 2000; 49: 1525–1533.

    Article  CAS  PubMed  Google Scholar 

  13. Kern W, Benedict C, Schultes B, Plohr F, Moser A, Born J et al. Low cerebrospinal fluid insulin levels in obese humans. Diabetologia 2006; 49: 2790–2792.

    Article  CAS  PubMed  Google Scholar 

  14. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL . Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002; 5: 514–516.

    Article  CAS  PubMed  Google Scholar 

  15. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH . Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127: 481–496.

    Article  CAS  PubMed  Google Scholar 

  16. Hallschmid M, Benedict C, Schultes B, Fehm HL, Born J, Kern W . Intranasal insulin reduces body fat in men but not in women. Diabetes 2004; 53: 3024–3029.

    Article  CAS  PubMed  Google Scholar 

  17. Greenwood CE, Kaplan RJ, Hebblethwaite S, Jenkins DJ . Carbohydrate-induced memory impairment in adults with type 2 diabetes. Diabetes Care 2003; 26: 1961–1966.

    Article  PubMed  Google Scholar 

  18. Squire LR, Zola SM . Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 1996; 93: 13515–13522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Plihal W, Born J . Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 1999; 36: 571–582.

    Article  CAS  PubMed  Google Scholar 

  20. Janke W, Debus G . Die Eigenschaftswörterliste (EWL). Hogrefe: Göttingen, 1978.

    Google Scholar 

  21. Jensen AR, Rohwer Jr WD . The stroop color-word test: a review. Acta Psychol (Amst) 1966; 25: 36–93.

    Article  CAS  Google Scholar 

  22. Fruehwald-Schultes B, Kern W, Bong W, Wellhoener P, Kerner W, Born J et al. Supraphysiological hyperinsulinemia acutely increases hypothalamic–pituitary–adrenal secretory activity in humans. J Clin Endocrinol Metab 1999; 84: 3041–3046.

    Article  CAS  PubMed  Google Scholar 

  23. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M . Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998; 19: 269–301.

    CAS  PubMed  Google Scholar 

  24. Jacobson L, Sapolsky R . The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocr Rev 1991; 12: 118–134.

    Article  CAS  PubMed  Google Scholar 

  25. Engler D, Redei E, Kola I . The corticotropin-release inhibitory factor hypothesis: a review of the evidence for the existence of inhibitory as well as stimulatory hypophysiotropic regulation of adrenocorticotropin secretion and biosynthesis. Endocr Rev 1999; 20: 460–500.

    CAS  PubMed  Google Scholar 

  26. Benedict C, Dodt C, Hallschmid M, Lepiorz M, Fehm HL, Born J et al. Immediate but not long-term intranasal administration of insulin raises blood pressure in human beings. Metabolism 2005; 54: 1356–1361.

    Article  CAS  PubMed  Google Scholar 

  27. Park CR . Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 2001; 25: 311–323.

    Article  CAS  PubMed  Google Scholar 

  28. Unger JW, Livingston JN, Moss AM . Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 1991; 36: 343–362.

    Article  CAS  PubMed  Google Scholar 

  29. Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 2002; 51: 3384–3390.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner U, Degirmenci M, Drosopoulos S, Perras B, Born J . Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory. Biol Psychiatry 2005; 58: 885–893.

    Article  CAS  PubMed  Google Scholar 

  31. Sapolsky RM . Potential behavioral modification of glucocorticoid damage to the hippocampus. Behav Brain Res 1993; 57: 175–182.

    Article  CAS  PubMed  Google Scholar 

  32. Bisagno V, Ferrini M, Rios H, Zieher LM, Wikinski SI . Chronic corticosterone impairs inhibitory avoidance in rats: possible link with atrophy of hippocampal CA3 neurons. Pharmacol Biochem Behav 2000; 66: 235–240.

    Article  CAS  PubMed  Google Scholar 

  33. Plihal W, Born J . Memory consolidation in human sleep depends on inhibition of glucocorticoid release. NeuroReport 1999; 10: 2741–2747.

    Article  CAS  PubMed  Google Scholar 

  34. Kern W, Born J, Schreiber H, Fehm HL . Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 1999; 48: 557–563.

    Article  CAS  PubMed  Google Scholar 

  35. Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA . Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 2004; 83: 47–54.

    Article  CAS  PubMed  Google Scholar 

  36. Arase K, Fisler JS, Shargill NS, York DA, Bray GA . Intracerebroventricular infusions of 3-OHB and insulin in a rat model of dietary obesity. Am J Physiol 1988; 255 (Part 1): R974–R981.

    CAS  PubMed  Google Scholar 

  37. El Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS . Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 2000; 105: 1827–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chavez M, Riedy CA, Van Dijk G, Woods SC . Central insulin and macronutrient intake in the rat. Am J Physiol 1996; 271 (Part 2): R727–R731.

    CAS  PubMed  Google Scholar 

  39. Clegg DJ, Brown LM, Woods SC, Benoit SC . Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 2006; 55: 978–987.

    Article  CAS  PubMed  Google Scholar 

  40. Clegg DJ, Riedy CA, Smith KA, Benoit SC, Woods SC . Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 2003; 52: 682–687.

    Article  CAS  PubMed  Google Scholar 

  41. Figlewicz D, Szot P, Greenwood MR . Insulin stimulates inositol incorporation in hippocampus of lean but not obese Zucker rats. Physiol Behav 1990; 47: 325–330.

    Article  CAS  PubMed  Google Scholar 

  42. Tschritter O, Preissl H, Hennige AM, Stumvoll M, Porubska K, Frost R et al. The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci USA 2006; 103: 12103–12108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L . Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002; 5: 566–572.

    Article  CAS  PubMed  Google Scholar 

  44. Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y et al. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest 2004; 114: 908–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjorntorp P, Rosmond R . Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord 2000; 24 (Suppl 2): S80–S85.

    Article  CAS  PubMed  Google Scholar 

  46. Dallman MF, Pecoraro NC, La Fleur SE, Warne JP, Ginsberg AB, Akana SF et al. Glucocorticoids, chronic stress, and obesity. Prog Brain Res 2006; 153: 75–105.

    Article  CAS  PubMed  Google Scholar 

  47. Fehm HL, Perras B, Smolnik R, Kern W, Born J . Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology? Eur J Pharmacol 2000; 405: 43–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N Bender, F Weidmann, I von Lützau and C Otten for expert technical assistance. Aero Pump, Hochheim, Germany, provided us with precision nasal air pumps. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 654/B3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hallschmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallschmid, M., Benedict, C., Schultes, B. et al. Obese men respond to cognitive but not to catabolic brain insulin signaling. Int J Obes 32, 275–282 (2008). https://doi.org/10.1038/sj.ijo.0803722

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803722

Keywords

This article is cited by

Search

Quick links