Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased expression of the macrophage markers and of 11β-HSD-1 in subcutaneous adipose tissue, but not in cultured monocyte-derived macrophages, is associated with liver fat in human obesity

Abstract

Objective:

To determine whether increased expression of macrophage markers and of inflammatory markers in subcutaneous adipose tissue is associated with liver fat in human obesity. We also determined whether expression of TNF (gene encoding TNF-α), HSD11B1 (gene encoding 11β-HSD-1) and RETN (gene encoding resistin) in cultured monocyte-derived macrophages differs between obese/overweight and non-obese subjects.

Design:

Cross-sectional comparison of obese/overweight and non-obese subjects with respect to adipose tissue gene expression, gene expression in monocyte-derived macrophages, liver fat content and in vivo insulin sensitivity.

Subjects:

Adipose tissue gene expression, gene expression in monocyte-derived macrophages, liver fat content and in vivo insulin sensitivity: 10 healthy non-obese (24.2±1.0 kg/m2) and 10 healthy obese/overweight (33.1±1.7 kg/m2) women. Gene expression in monocyte-derived macrophages: seven healthy non-obese (22.1±0.7 kg/m2) and seven healthy obese/overweight (36.9±2.2 kg/m2) women.

Measurements:

Adipose tissue biopsies and blood samples for isolation of peripheral mononuclear cells were taken after an overnight fast. Liver fat content was measured using magnetic resonance proton spectroscopy. Whole body insulin sensitivity was measured using the hyperinsulinemic euglycemic clamp technique. Expression levels of TNF, HSD11B1, RETN and the macrophage markers CD68 and ITGAM were determined by real-time PCR.

Results:

In adipose tissue, expression of HSD11B1, ITGAM and CD68 was significantly increased in the obese/overweight as compared to the non-obese group. Expression of all these genes was closely positively correlated with liver fat content and inversely correlated with whole body insulin sensitivity. The associations between expression of CD68, ITGAM and HSD11B1 and liver fat were independent of obesity. There were no differences in TNF, HSD11B1, RETN or CD68 gene expression basally or after stimulation with lipopolysaccharide in monocyte-derived macrophages between obese/overweight and non-obese subjects.

Conclusion:

Accumulation of fat in the liver is associated with increased adipose tissue inflammation independent of obesity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Reitman ML, Arioglu E, Gavrilova O, Taylor SI . Lipoatrophy revisited. Trends Endocrinol Metab 2000; 11: 410–416.

    Article  CAS  Google Scholar 

  2. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105: 271–278.

    Article  CAS  Google Scholar 

  3. Garg A . Lipodystrophies. Am J Med 2000; 108: 143–152.

    Article  CAS  Google Scholar 

  4. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–198.

    Article  CAS  Google Scholar 

  5. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    Article  CAS  Google Scholar 

  6. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  Google Scholar 

  7. Kannisto K, Sutinen J, Korsheninnikova E, Fisher RM, Ehrenborg E, Gertow K et al. Expression of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma co-activator 1, IL-6 and CD45 in subcutaneous adipose tissue in lipodystrophy associated with highly active antiretroviral therapy. AIDS 2003; 17: 1753–1762.

    Article  CAS  Google Scholar 

  8. Russo C, Polosa R . TNF-alpha as a promising therapeutic target in chronic asthma: a lesson from rheumatoid arthritis. Clin Sci (Lond) 2005; 109: 135–142.

    Article  CAS  Google Scholar 

  9. Mijatovic T, Kruys V, Caput D, Defrance P, Huez G . Interleukin-4 and -13 inhibit tumor necrosis factor-alpha mRNA translational activation in lipopolysaccharide-induced mouse macrophages. J Biol Chem 1997; 272: 14394–14398.

    Article  CAS  Google Scholar 

  10. Fain JN, Bahouth SW, Madan AK . TNFalpha release by the nonfat cells of human adipose tissue. Int J Obes Relat Metab Disord 2004; 28: 616–622.

    Article  CAS  Google Scholar 

  11. Beutler B, Cerami A . Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem 1988; 57: 505–518.

    Article  CAS  Google Scholar 

  12. Wang W, Poole B, Mitra A, Falk S, Fantuzzi G, Lucia S et al. Role of leptin deficiency in early acute renal failure during endotoxemia in ob/ob mice. J Am Soc Nephrol 2004; 15: 645–649.

    Article  CAS  Google Scholar 

  13. Kappes A, Loffler G . Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res 2000; 32: 548–554.

    Article  CAS  Google Scholar 

  14. Beltowski J . Adiponectin and resistin – new hormones of white adipose tissue. Med Sci Monit 2003; 9: RA55–RA61.

    CAS  PubMed  Google Scholar 

  15. Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L . Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 2001; 108: 1875–1881.

    Article  CAS  Google Scholar 

  16. Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, Johnson O et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001; 86: 1418–1421.

    Article  CAS  Google Scholar 

  17. Rask E, Walker BR, Soderberg S, Livingstone DE, Eliasson M, Johnson O et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 2002; 87: 3330–3336.

    CAS  PubMed  Google Scholar 

  18. Napolitano A, Voice MW, Edwards CR, Seckl JR, Chapman KE . 11Beta-hydroxysteroid dehydrogenase 1 in adipocytes: expression is differentiation-dependent and hormonally regulated. J Steroid Biochem Mol Biol 1998; 64: 251–260.

    Article  CAS  Google Scholar 

  19. Thieringer R, Le Grand CB, Carbin L, Cai TQ, Wong B, Wright SD et al. 11 Beta-hydroxysteroid dehydrogenase type 1 is induced in human monocytes upon differentiation to macrophages. J Immunol 2001; 167: 30–35.

    Article  CAS  Google Scholar 

  20. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B et al. Metabolic syndrome without obesity: hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci USA 2004; 101: 7088–7093.

    Article  CAS  Google Scholar 

  21. Arner P . Resistin: yet another adipokine tells us that men are not mice. Diabetologia 2005; 48: 2203–2205.

    Article  CAS  Google Scholar 

  22. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A . Resistin, an adipokine with potent proinflammatory properties. J Immunol 2005; 174: 5789–5795.

    Article  CAS  Google Scholar 

  23. Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, Zraika S et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 2005; 48: 2330–2333.

    Article  CAS  Google Scholar 

  24. Iqbal N, Seshadri P, Stern L, Loh J, Kundu S, Jafar T et al. Serum resistin is not associated with obesity or insulin resistance in humans. Eur Rev Med Pharmacol Sci 2005; 9: 161–165.

    CAS  PubMed  Google Scholar 

  25. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006; 55: 1554–1561.

    Article  CAS  Google Scholar 

  26. Westerbacka J, Corner A, Kannisto K, Kolak M, Makkonen J, Korsheninnikova E et al. Acute in vivo effects of insulin on gene expression in adipose tissue in insulin-resistant and insulin-sensitive subjects. Diabetologia 2006; 49: 132–140.

    Article  CAS  Google Scholar 

  27. Yki-Jarvinen H, Nikkila EA, Kubo K, Foley JE . Assay of glucose transport in human fat cells obtained by needle biopsy. Diabetologia 1986; 29: 287–290.

    Article  CAS  Google Scholar 

  28. Sutinen J, Hakkinen AM, Westerbacka J, Seppala-Lindroos A, Vehkavaara S, Halavaara J et al. Increased fat accumulation in the liver in HIV-infected patients with antiretroviral therapy-associated lipodystrophy. AIDS 2002; 16: 2183–2193.

    Article  CAS  Google Scholar 

  29. DeFronzo RA, Tobin JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–E223.

    CAS  PubMed  Google Scholar 

  30. Saren P, Welgus HG, Kovanen PT . TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 1996; 157: 4159–4165.

    CAS  PubMed  Google Scholar 

  31. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI . Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810–817.

    Article  CAS  Google Scholar 

  32. Marti B, Tuomilehto J, Salomaa V, Kartovaara L, Korhonen HJ, Pietinen P . Body fat distribution in the Finnish population: environmental determinants and predictive power for cardiovascular risk factor levels. J Epidemiol Community Health 1991; 45: 131–137.

    Article  CAS  Google Scholar 

  33. Kadish AH, Litle RL, Sternberg JC . A new and rapid method for the determination of glucose by measurement of rate of oxygen consumption. Clin Chem 1968; 14: 116–131.

    CAS  Google Scholar 

  34. Stenman UH, Pesonen K, Ylinen K, Huhtala ML, Teramo K . Rapid chromatographic quantitation of glycosylated haemoglobins. J Chromatogr 1984; 297: 327–332.

    Article  CAS  Google Scholar 

  35. Friedewald WT, Levy RI, Fredrickson DS . Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502.

    CAS  Google Scholar 

  36. Kannisto K, Pietilainen KH, Ehrenborg E, Rissanen A, Kaprio J, Hamsten A et al. Overexpression of 11beta-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J Clin Endocrinol Metab 2004; 89: 4414–4421.

    Article  CAS  Google Scholar 

  37. Lindsay RS, Wake DJ, Nair S, Bunt J, Livingstone DE, Permana PA et al. Subcutaneous adipose 11 beta-hydroxysteroid dehydrogenase type 1 activity and messenger ribonucleic acid levels are associated with adiposity and insulinemia in Pima Indians and Caucasians. J Clin Endocrinol Metab 2003; 88: 2738–2744.

    Article  CAS  Google Scholar 

  38. Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, Kenyon CJ et al. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 2000; 141: 560–563.

    Article  CAS  Google Scholar 

  39. Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M . Expression of the mRNA coding for 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab 2002; 87: 2701–2705.

    CAS  Google Scholar 

  40. Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH . Cortisol metabolism in human obesity: impaired cortisone → cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 1999; 84: 1022–1027.

    CAS  PubMed  Google Scholar 

  41. Westerbacka J, Yki-Jarvinen H, Vehkavaara S, Hakkinen AM, Andrew R, Wake DJ et al. Body fat distribution and cortisol metabolism in healthy men: enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver. J Clin Endocrinol Metab 2003; 88: 4924–4931.

    Article  CAS  Google Scholar 

  42. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM . Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab 2002; 87: 5630–5635.

    Article  CAS  Google Scholar 

  43. Wake DJ, Rask E, Livingstone DE, Soderberg S, Olsson T, Walker BR . Local and systemic impact of transcriptional up-regulation of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab 2003; 88: 3983–3988.

    Article  CAS  Google Scholar 

  44. Stewart PM, Krozowski ZS . 11 beta-hydroxysteroid dehydrogenase. Vitam Horm 1999; 57: 249–324.

    Article  CAS  Google Scholar 

  45. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294: 2166–2170.

    Article  CAS  Google Scholar 

  46. Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, Fievet C et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 2004; 53: 931–938.

    Article  CAS  Google Scholar 

  47. Gordon S . Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35.

    Article  CAS  Google Scholar 

  48. Duffield JS . The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 2003; 104: 27–38.

    Article  CAS  Google Scholar 

  49. Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R . Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care 2005; 8: 347–354.

    Article  CAS  Google Scholar 

  50. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 2003; 300: 472–476.

    Article  CAS  Google Scholar 

  51. Nagaev I, Smith U . Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun 2001; 285: 561–564.

    Article  CAS  Google Scholar 

  52. Furuhashi M, Ura N, Higashiura K, Murakami H, Shimamoto K . Circulating resistin levels in essential hypertension. Clin Endocrinol (Oxf) 2003; 59: 507–510.

    Article  CAS  Google Scholar 

  53. Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J Clin Endocrinol Metab 2003; 88: 4848–4856.

    Article  CAS  Google Scholar 

  54. Bastard JP, Caron M, Vidal H, Jan V, Auclair M, Vigouroux C et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 2002; 359: 1026–1031.

    Article  CAS  Google Scholar 

  55. Sutinen J, Kannisto K, Korsheninnikova E, Fisher RM, Ehrenborg E, Nyman T et al. Effects of rosiglitazone on gene expression in subcutaneous adipose tissue in highly active antiretroviral therapy-associated lipodystrophy. Am J Physiol Endocrinol Metab 2004; 286: E941–E949.

    Article  CAS  Google Scholar 

  56. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    Article  CAS  Google Scholar 

  57. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116: 115–124.

    Article  CAS  Google Scholar 

  58. Frittitta L, Grasso G, Munguira ME, Vigneri R, Trischitta V . Insulin receptor tyrosine kinase activity is reduced in monocytes from non-obese normoglycaemic insulin-resistant subjects. Diabetologia 1993; 36: 1163–1167.

    Article  CAS  Google Scholar 

  59. Chen NG, Abbasi F, Lamendola C, McLaughlin T, Cooke JP, Tsao PS et al. Mononuclear cell adherence to cultured endothelium is enhanced by hypertension and insulin resistance in healthy nondiabetic volunteers. Circulation 1999; 100: 940–943.

    Article  CAS  Google Scholar 

  60. Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P . Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 2004; 110: 1564–1571.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the project ‘Hepatic and adipose tissue and functions in the metabolic syndrome’ (HEPADIP, see http://www.hepadip.org/), which is supported by the European Commission as an Integrated Project under the 6th Framework Programme (Contract LSHM-CT-2005-018734). The study was also supported by grants from the Academy of Finland (JW, HY), the Research Foundation of the Orion Corporation (JM), the Lilly Foundation (JM), the Jalmari and Rauha Ahokas Foundation (JM), the Sigrid Juselius (HY), Liv och Hälsa (HY) and EVO (JW, HY) Foundations, the Swedish Research Council (RF, AH, project 15352), Biovitrum (HY, RF, JW, AH), the Swedish Heart-Lung Foundation (AH) and the Stockholm County Council (AH). We acknowledge Ms Mia Urjansson and Ms Katja Tuominen for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Westerbacka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makkonen, J., Westerbacka, J., Kolak, M. et al. Increased expression of the macrophage markers and of 11β-HSD-1 in subcutaneous adipose tissue, but not in cultured monocyte-derived macrophages, is associated with liver fat in human obesity. Int J Obes 31, 1617–1625 (2007). https://doi.org/10.1038/sj.ijo.0803635

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803635

Keywords

This article is cited by

Search

Quick links