Abstract
Childhood obesity is an important public health problem, with a rapidly increasing frequency worldwide. Identification of critical periods for the development of childhood and adolescent obesity could be very useful for targeting prevention measures. Weight status in early childhood is a poor predictor of adult adiposity status, and most obese adults were not obese as children. We first proposed to use the body mass index (BMI) charts to monitor individual BMI development. The adiposity rebound (AR) corresponds to the second rise in BMI curve that occurs between ages 5 and 7 years. It is not as direct a measure as BMI at any age, but because it involves the examination of several points during growth, and because it is identified at a time when adiposity level clearly change directions, this method provides information that can help us understand individual changes and the development of health risks. An early AR is associated with an increased risk of overweight. It is inversely associated with bone age, and reflects accelerated growth. The early AR recorded in most obese subjects and the striking difference in the mean age at AR between obese subjects (3 years) and non-obese subjects (6 years) suggest that factors have operated very early in life. The typical pattern associated with an early AR is a low BMI followed by increased BMI level after the rebound. This pattern is recorded in children of recent generations as compared to those of previous generations. This is owing to the trend of a steeper increase of height as compared to weight in the first years of life. This typical BMI pattern (low, followed by high body fatness level) is associated with metabolic diseases such as diabetes and coronary heart diseases. Low body fatness before the AR suggests that an energy deficit had occurred at an early stage of growth. It can be attributable to the high-protein, low-fat diet fed to infants at a time of high energy needs, the former triggering height velocity and the latter decreasing the energy density of the diet and then reducing energy intake. The high-fat, low-protein content of human milk may contribute to its beneficial effects on growth processes. Early (pre- and postnatal) life is a critical period during which environmental factors may programme adaptive mechanisms that will persist in adulthood. Under-nutrition in fetal life or during the first years after birth may programme a thrifty metabolism that will exert adverse effects later in life, especially if the growing child is exposed to overnutrition. These observations stress the importance of an adequate nutritional status in childhood and the necessity to provide nutritional intakes adapted to nutritional needs at various stages of growth. Because the AR reflects particular BMI patterns, it is a useful tool for the paediatrician to monitor the child's adiposity development and for researchers to investigate the different developmental patterns leading to overweight. It contributes to the understanding of chronic disease programming and suggests new approaches to obesity prevention.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Protein and growth during the first year of life: a systematic review and meta-analysis
Pediatric Research Open Access 20 March 2023
-
Prenatal adherence to the Mediterranean diet decreases the risk of having a small-for-gestational-age baby, ECLIPSES study
Scientific Reports Open Access 13 August 2022
-
Prenatal and childhood exposure to chlordecone and adiposity of seven-year-old children in the Timoun mother–child cohort study in Guadeloupe (French West Indies)
Environmental Health Open Access 19 April 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Barker DJP, Winter PD, Osmond C, Margetts B, Simmonds SJ . Weight in infancy and death from ischaemic heart disease. Lancet 1989; 2: 577–580.
Lucas A . Programming by early nutrition in man. In: Bock GR, Whelan J (eds). The Childhood Environment and Adult Diseases CIBA Foundation Symposium 156. Wiley: Chichester, UK, 1991. pp 38–55.
Power C, Lake JK, Cole TJ . Measurements and long-term health risks of child and adolescent fatness. Int J Obes Relat Metab Disord 1997; 21: 507–526.
RollandCachera MF, Deheeger M, Bellisle F, Sempé M, Guilloud-Bataille M, Patois E . Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr 1984; 39: 129–135.
Report of a WHO Expert Committee. Physical status: the use and interpretation of anthropometry. WHO: Geneva, 1995.
Rolland-Cachera MF, Sempé M, Guilloud-Bataille M, Patois E, Péquignot-Guggenbuhl F, Fautrad V . Adiposity indices in children. Am J Clin Nutr 1982; 36: 178–184.
Rolland-Cachera MF, Cole TJ, Sempé M, Tichet J, Rossignol C, Charraud A . Body mass index variations: centiles from birth to 87 years. Eur J Clin Nutr 1991; 45: 13–21.
Rolland-Cachera MF, Deheeger M, Avons P, Guilloud-Bataille M, Patois E, Sempé M . Tracking adiposity patterns from 1 month to adulthood. Ann Hum Biol 1987; 14: 219–222.
Dorosty AR, Emmett PM, Cowin IS, Reilly JJ, the ALSPAC Study team. Factors associated with early adiposity rebound. Pediatrics 2000; 105: 1115–1118.
Gasser TH, Ziegler P, Seifert B, Molinari L, Lardo R, Prader A . Prediction of adult skinfolds and body mass from infancy through adolescence. Ann Hum Biol 1995; 22: 217–233.
Siervogel RM, Roche AF, Guo S, Mukherjee D, Chumlea WC . Patterns of change in weight/stature2 from 2 to 18 years: findings from long-term serial data for children in the Fels longitudinal growth study. Int J Obes Relat Metab Disord 1991; 15: 479–485.
Whitaker R, Pepe MS, Wright JA, Seidel KD, Dietz WH . Early adiposity rebound and the risk of adult obesity. Pediatrics 1998; 101: e5.
Williams S, Davie G, Lam F . Predicting BMI in young adults from childhood data using two approaches to modelling adiposity rebound. Int J Obes Relat Metab Disord 1999; 23: 348–354.
Guo SS, Huang C, Maynard LM, Demerath E, Towne B, Chumlea WC et al. Body mass index during childhood, adolescence and young adulthood in relation to adult overweight and adiposity: the fels longitudinal study. Int J Obes Relat Metab Disord 2000; 24: 1628–1635.
Kroke A, Hahn S, Buyken AE, Liese AD . A comparative evaluation of two different approaches to estimating age at adiposity rebound. Int J Obes (London) Relat Metab Disord 2006; 30: 261–266.
Prokopec M, Bellisle F . Adiposity in Czech children followed from one month of age to adulthood: analysis of individual BMI patterns. Ann Hum Biol 1993; 20: 51725.
Freedman DS, Kettel Khan L, Serdula MK, Srinivan SR, Berenson GS . BMI rebound, childhood height and obesity among adults: the Bogalusa Heart study. Int J Obes Relat Metab Disord 2001; 25: 543–549.
He Q, Karlberg J . Probability of adult overweight and risk change during the BMI rebound period. Obes Res 2002; 10: 135–140.
Sempé M, Pédron G, Roy-Pernot MP . Auxologie, méthode et sequences. Vol 1 Théraplix 1979. Paris, pp 1–205.
Falkner F, Hindley CB, Sénécal J, Dean RFA, Karlgerg P, Ferrel E . Child development an international method of study. Med Probl Pediatr Basel Karger Ed 1960; 5: 1–237.
Dietz WH . ‘Adiposity rebound’ reality or epiphenomenona? Lancet 2000; 356: 2027–2028.
Taylor RW, Goulding A, Lewis-Barned NJ, Williams SM . Rate of fat gain is faster in girls undergoing early adiposity rebound. Obes Res 2004; 12: 1228–1230.
Ong KK, Preece MA, Emmett PM, Ahmed ML, Dunger DB, ALSPAC Study Team. Size at birth and early childhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis. Pediatr Res 2002; 52: 863–867.
Gunnarsdottir I, Thorsdottir I . Relationship between growth and feeding in infancy and body mass index at the age of 6 years. Int J Obes Relat Metab Disord 2003; 27: 1523–1527.
Rolland-Cachera MF, Méance S, Deheeger M . Height gain in infancy is associated with body fat and fat pattern at age 14 years. Int J Obes Relat Metab Disord 2000; 24 (Suppl 1): S40.
Rolland-Cachera MF . Rate of growth in early life. A predictor of later life? Adv Exp Med Biol 2005; 569: 35–39.
Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP . The growth of adipose tissue in children and adolescents. Cross sectional and longitudinal studies of adipose cell number and size. J Clin Invest 1979; 63: 239–246.
Williams S, Dickson N . Early growth, menarche and adiposity rebound. Lancet 2002; 359: 580–581.
Cole TJ . Children grow and horses race: is the adiposity rebound a critical period for later obesity? BMC Pediatr 2004; 12: 4:6.
Rolland-Cachera MF, Deheeger M, Akrout M, Bellisle F . Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int J Obes Relat Metab Disord 1995; 19: 573–578.
Deheeger M, Rolland-Cachera MF . Longitudinal study of anthropometric measurements in Parisian children aged 10 months to 18 years. Arch Pediatr 2004; 11: 1139–1144 (In French).
Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ . Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia 2003; 46: 190–194.
Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004; 350: 865–875.
Barker DJP, Osmond C, Forsen TJ, Kajantie E, Eriksson JG . Trajectoires of growth among children who have coronary events as adults. N Engl J Med 2005; 353: 1802–1809.
Dulloo AG, Jacquet J, Montani JP . Pathways from weight fluctuations to metabolic diseases: focus on maladaptative thermogenesis during catch-up fat. Int J Obes Relat Metab Disord 2002; 26: S46–S57.
Girardet JP, Tounian P, Le Bars MA, Boreux A . Obesité de l'enfant: intérêt des indicateurs cliniques d'évaluation. Annal Pédiatr 1993; 40: 297–303.
Rolland-Cachera MF, Bellisle F . Timing weight-control measures in obese children. The Lancet 1990; 335: 918.
Rolland-Cachera MF . Onset of Obesity assessed from the weight/stature2 curve in children: the need for a clear definition. Int J Obes Relat Metab Disord 1993; 17: 245–246.
Cole TJ . The secular trend in human physical growth: a biological view. Econ Hum Biol 2003; 1: 161–168.
Akrout M, Deheeger M, Rolland-Cachera MF . Secular trends in patterns of growth: comparison between two longitudinal studies (2-to-8 years of age) of children born in 1955 and 1985. Int J Obes Relat Metab Disord 1995; 19 (suppl 2): 51.
Cole TJ . The LMS method for constructing normalized growth standards. Eur J Clin Nutr 1990; 44: 45–60.
Hesse V, Bernhardt I, Hofmann A, Kunath H, Hesse G . Jena longitudinal study of growth of 0–3-year old children. 2: percentile curves for body height, body weight, height related weight and growth rate. Padiatr Grenzgeb 1991; 30: 22–35.
Ulmen U, Hesse V, Hinkel J, Beloudi P, Kabelitz M . Comparison of length, height and body weight in two German longitudinal studies in infants and toddlers with a time intervalle of more than twenty years (1978 vs 2001). Monatsschrift Kinderheilkd 2005; 153: 1026.
Hughes JM, Li L, Chinn S, Rona RJ . Trends in growth in England and Scotland, 1972 to 1994. Arch Dis Child 1997; 76: 182–189.
Deheeger M, Rolland-Cachera MF, Fontvieille AM . Physical Activity and body composition in 10-year-old French children: linkages with nutritional intake? Int J Obes Relat Metab Disord 1997; 21: 372–379.
Scaglioni S, Agostoni C, DeNotaris R, Radaelli G, Radice N, Valenti M et al. Early macronutrient intake and overweight at 5 years of age. Int J Obes Relat Metab Disord 2000; 24: 777–781.
Magarey AM, Daniels LA, Boulton TJC, Cockington RA . Does fat intake predict adiposity in healthy children and adolescents aged 2–15? A longitudinal analysis. Eur J Clin Nutr 2001; 55: 471–481.
Hoppe C, Molgaard C, Thomsen BL, Juul A, Michaelsen KF . Protein intake at 9 months of age is associated with body size but not with body fat in 10-y-old Danish children. Am J Clin Nutr 2004; 79: 494–501.
Rolland-Cachera MF . Prediction of adult body composition from infant and childhood measurements. In: Davies PWS and Cole T (eds). Body Composition Techniques in Health and Disease. Cambridge University Press: Cambridge, 1995. pp 100–145.
Rolland-Cachera MF, Deheeger M, Bellisle F . Increasing prevalence of obesity among 18-year-old males in Sweden: evidence for early determinants. Acta Paediatr 1999; 88: 365–367.
Loche S, Cappa M, Borrelli A, Faedda A, Crino A, Cella SG et al. Reduced growth hormone response to growth hormone-releasing hormone in children with simple obesity: evidence for somatomedin-C mediated inhibition. Clin Endocrinol 1987; 27: 145–153.
Hoppe C, Udam TR, Lauritzen L, Molgaard C, Juul A, Michaelsen KF . Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 2004; 80: 447–452.
Michaelsen KF, Jorgensen MH . Dietary fat content and energy density during infancy and childhood; the effect on energy intake and growth. Eur J Clin Nutr 1995; 49: 467–483.
Stettler N, Stallings VA, Troxel AB, Zhao J, Schinnar R, Nelson SE et al. Weight gain in the first week of life and overweight in adulthood. A cohort study of European American subjects fed infant formula. Circulation 2005; 111: 1897–1903.
Fewtrell MS, Doherty C, Cole TJ, Stafford M, Hales CN, Lucas A . Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 2000; 43: 714–717.
Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A . Is slower early growth beneficial for long-term cardiovascular health? Circulation 2004; 109: 1108–1113.
Albanes D, Jones DY, Schatzkin A, Micozzi MS, Taylor PR . Adult stature and risk of cancer. Cancer Res 1988; 48: 1658–1662.
Gunnell DJ, Davey Smith G, Holly JMP, Frankel S . Leg length and risk of cancer in the Boyd Orr cohort. BMJ 1998; 317: 150–151.
Deheeger M, Rolland-Cachera MF, Labadie MD, Rossignol C . Etude longitudinale de la croissance et de l'alimentation d'enfants examinés de l'âge de 10 mois à 8 ans. Cah Nut Diét 1994; 1: 16–23.
Deheeger M, Bellisle F, Rolland-Cachera MF . The French longitudinal study of growth and nutrition: data in adolescent males and females. J Hum Nutr Dietetics 2002; 15: 429–438.
Gregory JR, Collins DL, Davies PSW, Hughes JM, Clarke PC . National Diet and Nutrition Survey: Children Aged 15–45 Years. HMSO: London, 1995; 391 p.
Alexy U, Sichert-Hellert W, Kersting M . Fifteen-year time trends in energy d macronutrient intake in German children and adolescents: results of the DONALD study. Br J Nutr 2002; 87: 595–604.
Noble S, Emmett, the ALSPAC Study team. Food and nutrient intake in a cohort of 8-month-old infants in the south-west of England in 1993. Eur J Clin Nutr 2001; 55: 689–707.
Deheeger M, Rolland-Cachera MF, Péquignot F, Labadie MC, Rossignol C . Changes in food intake in two-year old children between 1973 and 1986. Ann Nutr Metab 1991; 140: 132–146 (In French).
Rolland-Cachera MF, Bellisle F . Nutrition. In: Burniat W, Lissau I & Cole T (eds) The obese and overweight child. Cambridge University Press: Cambridge, 2002. pp 69–92.
Rolland-Cachera MF, Maillot M, Deheeger M, Bellisle F . Nutritional intakes in early life and adult adiposity; the ‘ELANCE’ two decade follow-up study. Int J Obesity 2006; 30 (Suppl 2): S12.
Lucas A . Role of nutritional programming in determining adult morbidity. Arch Dis Child 1994; 71: 288–290.
Prentice A, Branca F, Decsi T, Michaelsen KF, Fletcher RJ, Guesry P et al. Energy and nutrient dietary reference values for children in Europe: methodological approaches and current nutritional recommendations. Br J Nutr 2004; 92 (Suppl 2): S83–S146.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rolland-Cachera, M., Deheeger, M., Maillot, M. et al. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes 30 (Suppl 4), S11–S17 (2006). https://doi.org/10.1038/sj.ijo.0803514
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.ijo.0803514
Keywords
- adiposity rebound
- growth
- child nutrition
- trends
- metabolic diseases
This article is cited by
-
Protein and growth during the first year of life: a systematic review and meta-analysis
Pediatric Research (2023)
-
Pediatric body mass index trajectories and the risk of hypertension among adolescents in China: a retrospective cohort study
World Journal of Pediatrics (2023)
-
Prenatal and childhood exposure to chlordecone and adiposity of seven-year-old children in the Timoun mother–child cohort study in Guadeloupe (French West Indies)
Environmental Health (2022)
-
Longitudinal association between the timing of adiposity peak and rebound and overweight at seven years of age
BMC Pediatrics (2022)
-
Infant feeding practices associated with adiposity peak and rebound in the EDEN mother–child cohort
International Journal of Obesity (2022)