Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Energy expenditure of genuine laughter

A Corrigendum to this article was published on 09 December 2014

Abstract

Objective:

To measure energy expenditure (EE) and heart rate (HR) during genuine laughter.

Design:

Experimental trial of viewing film clips in four cycles either intended to evoke laughter (humorous −10 min) or unlikely to elicit laughter (not humorous −5 min) under strictly controlled conditions of a whole-room indirect calorimeter equipped with audio recording system.

Participants:

Forty five adult friend dyads in either same-sex male (n=7), same-sex female (n=21) and mix-sex male-female (n=17); age 18–34 years; body mass index 24.7±4.9 (range 17.9–41.1).

Measurements:

Energy expenditure in a whole-room indirect calorimeter, HR using Polar HR monitor. Laugh rate, duration and type from digitized audio data using a computerized system and synchronized with HR and EE results.

Results:

Laughter EE was 0.79±1.30 kJ/min (0.19±0.31 kcal/min) higher than resting EE (P<0.001, 95% confidence interval=0.75–0.88 kJ/min), ranging from –2.52 to 9.67 kJ/min (−0.60–2.31 kcal/min). Heart rate during laughter segments increased above resting by 2.1±3.8 beats/min, ranging from −7.6 to 26.8 beats/min. Laughter EE was correlated with HR (rs=0.250, P<0.01). Both laughter EE and HR were positively correlated with laughter duration (rs=0.282 and 0.337, both P<0.001) and rate (rs=0.256 and 0.298, both P<0.001).

Conclusion:

Genuine voiced laughter causes a 10–20% increase in EE and HR above resting values, which means that 10–15 min of laughter per day could increase total EE by 40–170 kJ (10–40 kcal).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Darwin C . The expression of the emotions in man and animals. In: Ekman P (ed). Introduction, Afterwards, and Commentaries 3rd edn. Harper Collins (US edit. Oxford University Press): New York, 1998.

    Google Scholar 

  2. Ruch W, Ekman P . The expressive pattern of laughter. In: Kaszniak A (ed). Emotion, Qualia and Consciousness. World Scientific: Tokyo, 2001, pp 426–443.

    Chapter  Google Scholar 

  3. Black DW . Laughter. JAMA 1984; 252: 2995–2998.

    Article  CAS  Google Scholar 

  4. Wild B, Rodden FA, Grodd W, Ruch W . Neural correlates of laughter and humour. Brain 2003; 126: 2121–2138.

    Article  Google Scholar 

  5. Martin RA . Humor, laughter, and physical health: methodological issues and research findings. Psychol Bull 2001; 127: 504–519.

    Article  CAS  Google Scholar 

  6. Fry W . The physiological effects of humor, mirth, and laughter. JAMA 1992; 267: 1857–1858.

    Article  Google Scholar 

  7. Bennett MP, Zeller JM, Rosenberg L, McCann J . The effect of mirthful laughter on stress and natural killer cell activity. Altern Ther Health Med 2003; 9: 38–45.

    PubMed  Google Scholar 

  8. Hayashi K, Hayashi T, Iwanaga S, Kawai K, Ishii H, Shoji S et al. Laughter lowered the increase in postprandial blood glucose. Diabetes Care 2003; 26: 1651–1652.

    Article  Google Scholar 

  9. Kimata H . Elevation of breast milk leptin levels by laughter. Horm Metab Res 2004; 36: 254–256.

    Article  CAS  Google Scholar 

  10. Clark A, Seidler A, Miller M . Inverse association between sense of humor and coronary heart disease. Intern J Cardiol 2001; 80: 87–88.

    Article  CAS  Google Scholar 

  11. Owren MJ, Bachorowski JA . Reconsidering the evolution of nonlinguistic communication: the case of laughter. J Nonverbal Behavior 2003; 27: 183–200.

    Article  Google Scholar 

  12. Sun M, Reed GW, Hill JO . Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure. J Appl Physiol 1994; 76: 2686–2691.

    Article  CAS  Google Scholar 

  13. Chen KY, Acra SA, Donahue CL, Sun M, Buchowski MS . Efficiency of walking and stepping: relationship to body fatness. Obes Res 2004; 12: 982–989.

    Article  Google Scholar 

  14. Bachorowski JA, Owren MJ . Sounds of emotion: production and perception of affect-related vocal acoustics. Ann N Y Acad Sci 2003; 1000: 244–265.

    Article  Google Scholar 

  15. Filippelli M, Pellegrino R, Iandelli I, Misuri G, Rodarte JR, Duranti R et al. Respiratory dynamics during laughter. J Appl Physiol 2001; 90: 1441–1446.

    Article  CAS  Google Scholar 

  16. Boone T, Hansen S, Erlandson A . Cardiovascular responses to laughter: a inverted question mark pilot project. Appl Nurs Res 2000; 13: 204–208.

    Article  CAS  Google Scholar 

  17. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000; 9: S498–S516.

    Article  Google Scholar 

  18. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH et al. Interindividual variation in posture allocation: possible role in human obesity. Science 2005; 307: 584–586.

    Article  CAS  Google Scholar 

  19. Perini R, Veicsteinas A . Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 2003; 90: 317–325.

    Article  Google Scholar 

  20. Robinson BF, Epstein SE, Beiser GD, Braunwald E . Control of heart rate by the autonomic nervous system. Circ Res 1966; 19: 400–411.

    Article  CAS  Google Scholar 

  21. Yamamoto Y, Hughson RL, Peterson JC . Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 1991; 71: 1136–1142.

    Article  CAS  Google Scholar 

  22. Sakuragi S, Sugiyama Y, Takeuchi K . Effects of laughing and weeping on mood and heart rate variability. J Physiol Anthropol Appl Hum Sci 2002; 21: 159–165.

    Article  Google Scholar 

  23. Berk LS, Tan SA, Fry WF, Napier BJ, Lee JW, Hubbard RW et al. Neuroendocrine and stress hormone changes during mirthful laughter. Am J Med Sci 1989; 298: 390–396.

    Article  CAS  Google Scholar 

  24. Levenson RW . Autonomic nervous system differences among emotions. Psychol Sci 1992; 3: 23–33.

    Article  Google Scholar 

  25. Provine RP, Fischer KR . Laughing, smiling, and talking: relation to sleeping and social context in humans. Ethology 1989; 83: 295–305.

    Article  Google Scholar 

  26. Muller MJ, Bosy-Westphal A, Kutzner D, Heller M . Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev 2002; 3: 113–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported partly by the US National Institutes of Health (HBL 001750) to MSB, General Clinical Research Center Grant RR-00095 (to Vanderbilt University) and Clinical Nutrition Research Unit Grant DK-26657 (to Vanderbilt University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Buchowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchowski, M., Majchrzak, K., Blomquist, K. et al. Energy expenditure of genuine laughter. Int J Obes 31, 131–137 (2007). https://doi.org/10.1038/sj.ijo.0803353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803353

Keywords

Search

Quick links