Abstract
Background:
A combination of tyrosine, capsaicin, catechines and caffeine may stimulate the sympathetic nervous system and promote satiety, lipolysis and thermogenesis. In addition, dietary calcium may increase fecal fat excretion.
Objective:
To investigate the acute and subchronic effect of a supplement containing the above mentioned agents or placebo taken t.i.d on thermogenesis, body fat loss and fecal fat excretion.
Design:
In total, 80 overweight–obese subjects ((body mass index) 31.2±2.5 kg/m2, mean±s.d.) underwent an initial 4-week hypocaloric diet (3.4 MJ/day). Those who lost>4% body weight were instructed to consume a hypocaloric diet (−1.3 MJ/day) and were randomized to receive either placebo (n=23) or bioactive supplement (n=57) in a double-blind, 8-week intervention. The thermogenic effect of the compound was tested at the first and last day of intervention, and blood pressure, heart rate, body weight and composition were assessed.
Results:
Weight loss during the induction phase was 6.8±1.9 kg. At the first exposure the thermogenic effect of the bioactive supplement exceeded that of placebo by 87.3 kJ/4 h (95%CI: 50.9;123.7, P=0.005) and after 8 weeks this effect was sustained (85.5 kJ/4 h (47.6;123.4), P=0.03). Body fat mass decreased more in the supplement group by 0.9 kg (0.5; 1.3) compared with placebo (P<0.05). The bioactive supplement had no effect on fecal fat excretion, blood pressure or heart rate.
Conclusion:
The bioactive supplement increased 4-h thermogenesis by 90 kJ more than placebo, and the effect was maintained after 8 weeks and accompanied by a slight reduction in fat mass. These bioactive components may support weight maintenance after a hypocaloric diet.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kovacs EM, Lejeune MP, Nijs I, Westerterp-Plantenga MS . Effects of green tea on weight maintenance after body-weight loss. Br J Nutr 2004; 91: 431–437.
Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999; 70: 1040–1045.
Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y et al. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 2005; 81: 122–129.
Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J . Green tea and thermogenesis: interactions between catechin–polyphenols, caffeine and sympathetic activity. Int J Obes 2000; 24: 252–258.
Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V, Weber P . TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann Nutr Metab 2005; 49: 54–63.
Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I . Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol 2004; 288: R708–R715.
Klaus S, Pultz S, Thone-Reineke C, Wolfram S . Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes Relat Metab Disord 2005; 29: 615–623.
Lejeune MPGM, Kovacs EMR, Westerterp-Plantenga MS . Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br J Nutr 2003; 90: 651–659.
Yoshioka M, St-Pierre S, Suzuki M, Tremblay A . Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br J Nutr 1998; 80: 503–510.
Yoshioka M, St-Pierre S, Drapeau V, Dionne I, Doucet E, Suzuki M et al. Effects of red pepper on appetite and energy intake. Br J Nutr 1999; 82: 115–123.
Westerterp-Plantega MS, Smeets A, Lejeune M . Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes Relat Metab Disord 2005; 29: 682–688.
Yoshioka M, Imanaga M, Ueyama H, Yamane M, Kubo Y, Boivin A et al. Maximum tolerable dose of red pepper decreases fat intake independently of spicy sensation in the mouth. Br J Nutr 2004; 91: 991–995.
Astrup A, Breum L, Toubro S, Hein P, Quaade F . The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet. A double blind trial. Int J Obes 1992; 16: 269–277.
Yoshioka M, Doucet E, Drapeau V, Dionne I, Tremblay A . Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br J Nutr 2001; 85: 203–211.
Dulloo AG . Herbal simulation of ephedrine and caffeine in treatment of obesity. Int J Obes 2002; 26: 590–592.
Dulloo AG, Seydoux J, Girardier L . Paraxanthine (metabolite of caffeine) mimics caffeine's interaction with sympathetic control of thermogenesis. Am J Physiol 1994; 267: E801–E804.
Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I . Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004; 18: 55–62.
Hull KM, Maher TJ . L-tyrosine potentiates the anorexia induced by mixed-acting sympathomimetic drugs in hyperphagic rats. J Pharmacol Exp Therapeutics 1990; 255: 403–409.
Hull KM, Mahler TJ . L-tyrosine fails to potentiate several peripheral actions of the sympathomimetics. Pharmacol Biochem Behav 1991; 39: 755–759.
Hull KM, Mahler TJ . Effects of L-tyrosine on mixed-acting sympathomimetic-induced pressor actions. Pharmacol Biochem Behav 1992; 43: 1047–1052.
Barr SI . Increased dairy product or calcium intake: is body weight or composition affected in humans? J Nutr 2003; 133: 245S–248S.
Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC . Regulation of adiposity by dietary calcium. FASEB J 2000; 14: 1132–1138.
Zemel MB . Regulation of adiposity and obesity risk by dietary calcium: mechanism and implications. J Am Coll Nutr 2002; 21: 146S–151S.
Parrikh SJ, Yanovski JA . Calcium intake and adiposity. Am J Clin Nutr 2003; 77: 281–287.
Papakonstantinou E, Flatt WP, Huth PJ, Harris RBS . High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obes Res 2003; 11: 387–394.
Jacobsen R, Lorenzen JK, Toubro S, Krog-Mikkelsen I, Astrup A . Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int J Obes Relat Metab Disord 2005; 29: 292–301.
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000; 288: 306–313.
Vogel G . Hot pepper receptor could help manage pain. Science 2000; 288: 241–242.
Durand J, Giacobino JP, Girardier L . Catechol-O-methyl-transferase activity in whole brown adipose tissue of rat in vitro. In: Girardier L, Seydoux J (eds) Effectors of Thermogenesis. Birkhauser: Basel, Switzerland, 1977, pp 45–53.
Borchardt RT, Huber JA . Catechol O-methyltransferase: structure-activity relationships for inhibition by flavonoids. J Med Chem 1975; 18: 120–122.
Rhodes MJ . Physiologically-active compounds in plant foods: an overview. Proc Nutr Soc 1996; 55: 371–384.
Welberg JW, Monkelbaan JF, deVries EG, Muskiet FA, Cats A, Oremus ET et al. Effects of supplemental dietary calcium on quantitative fecal fat excretion in man. Ann Nutr Metab 1994; 38: 185–191.
Belza A, Jessen AB . Bioactive food stimulants of sympathetic activity: effect on 24-h energy expenditure and fat oxidation. Eur J Clin Nutr 2005; 59: 733–741.
Verdich C, Madsen JL, Toubro S, Buemann B, Holst JJ, Astrup A . Effect of obesity and major weight reduction on gastric emptying. Int J Obes Relat Metab Disord 2000; 24: 899–905.
Lukaski HC, Bolonchuk WW, Hall CB, Siders WA . Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 1986; 60: 1327–1332.
Svendsen OL, Haarbo J, Hassager C, Christiansen C . Accuracy of measurements of body composition by dual-energy X-ray absorptiometry in vivo. Am J Clin Nutr 1993; 57: 605–608.
Astrup A, Toubro S, Cannon S, Hein P, Madsen J . Thermogenic synergism between ephedrine and caffeine in healthy volunteers. A double blind placebo controlled study. Metabolism 1991; 40: 323–329.
Weir JB . New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949; 109: 1–9.
Scott EM, Greenwood JP, Gilbey SG, Stoker JB, Mary DASG . Water ingestion increases sympathetic vasoconstrictor discharge in normal human subjects. Clin Sci 2001; 100: 335–342.
Brown CM, Barberini L, Dulloo AG, Montani J-P . Cardiovascular responses to water drinking: does osmolality play a role? Am J Physiol Regul Integr Comp Physiol 2005; 289: R1687–R1692.
Bligh EG, Dyer WJ . A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911–917.
Bingham S, Cummings JH . The use of 4-aminobenzoic acid as a marker to validate the completeness of 24 h urine collections in man. Clin Sci 1983; 64: 629–635.
van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM, DeSmet M et al. Acute effect of L796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin Pharmacol Ther 2002; 71: 272–279.
Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WHM et al. Effect of a 28-d treatment with L796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 2002; 76: 780–788.
Korel F, Bagdatlioglu N, Balaban MO, Hisil Y . Ground red peppers: capsaicinoids content, Scoville scores, and discrimination by an electronic nose. J Agric Food Chem 2002; 50: 3257–3261.
Lim K, Yoshioka M, Kikizato S, Tanaka H, Shindo M, Suzuki M . Dietary red pepper ingestion increases carbohydrate oxidation at rest and during exercise in runners. Med Sci in Sports Exerc 1997; 29: 355–361.
Yoshioka M, Lim K, Kikuzato S, Kiyonaga A, Tanaka H, Shindo M et al. Effects of red-pepper diet on the energy metabolism in men. J Nutr Sci Vitaminol 1995; 41: 647–656.
Kao YH, Hiipakka RA, Liao S . Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141: 980–987.
Denke MA, Fox MM, Schulte MC . Short-term dietary calcium fortification increases fecal saturated fat content and reduces serum lipids in men. J Nutr 1993; 123: 1047–1053.
Shahkhalili Y, Murset C, Meirim I, Duruz E, Guinchard S, Cavadini C et al. Calcium supplementation of chocolate: effect on cocoa butter digestibility and blood lipids in humans. Am J Clin Nutr 2001; 73: 246–252.
Acknowledgements
We thank John Lind and Inge Timmermann for their expert technical assistance, and Arne Astrup and Søren Toubro for critical reading of the manuscript. The study was supported by a grant from Metabolife Inc, San Diego, CA, USA. The dietary supplements containing the ingredients examined in the present paper were manufactured by Alpine Health Products, Salt Lake City, Utah, and are not commercially available.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Belza, A., Frandsen, E. & Kondrup, J. Body fat loss achieved by stimulation of thermogenesis by a combination of bioactive food ingredients: a placebo-controlled, double-blind 8-week intervention in obese subjects. Int J Obes 31, 121–130 (2007). https://doi.org/10.1038/sj.ijo.0803351
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.ijo.0803351
Keywords
This article is cited by
-
Resting Oxygen Uptake Value of 1 Metabolic Equivalent of Task in Older Adults: A Systematic Review and Descriptive Analysis
Sports Medicine (2022)
-
Combined extracts of Moringa oleifera, Murraya koeingii leaves, and Curcuma longa rhizome increases energy expenditure and controls obesity in high-fat diet-fed rats
Lipids in Health and Disease (2020)
-
The Possible Role of Nutraceuticals in the Prevention of Cardiovascular Disease
High Blood Pressure & Cardiovascular Prevention (2019)
-
Capsaicinoids supplementation decreases percent body fat and fat mass: adjustment using covariates in a post hoc analysis
BMC Obesity (2018)
-
Capsaicinoids: a spicy solution to the management of obesity?
International Journal of Obesity (2016)