Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Microalbuminuria in pediatric obesity: prevalence and relation to other cardiovascular risk factors

Abstract

Background:

Microalbuminuria (MA) has emerged as a strong predictor of cardiovascular (CV) events, even in nondiabetic adults. While the mechanisms behind this association remain to be established, most studies suggest that MA is the result of increased vascular leakage denoting endothelial dysfunction associated with early vasculopathy.

Objective:

To examine if a urine albumin creatinine ratio (UACR) in the microalbuminuric range is related to metabolic markers of CV risk in obese and pre-diabetic youth recruited from an obesity clinic.

Methods:

MA was defined as a UACR between 2.0 and 20 mg/mmol. Subjects with gross proteinuria (UACR>20 mg/mmol) were excluded from the study. Analyses were performed to assess the relationship of MA and markers of CV risk, including body mass index (BMI), % body fat, blood pressure (BP), lipid profile, inflammatory markers, insulin sensitivity indexes and degrees of oral glucose tolerance. MA was also correlated with risk factor constellations unique to the metabolic syndrome, a distinct CV risk entity.

Results:

Postchallenge alterations in glucose metabolism and overall loss in insulin sensitivity were strongly and positively correlated with the presence of MA (P=0.002 and 0.01, respectively). Neither the metabolic syndrome nor any of the individual CV risk factors examined were associated with MA.

Conclusions:

These data suggest that early glucose toxicity, as reflected by postchallenge elevations in plasma glucose even below the diagnostic cutoff for diabetes mellitus may contribute to the presence of MA. Whether MA is equally as predictive of CV disease in youth, as in adulthood, remains to be investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mogensen CE . Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984; 310: 356–360.

    Article  CAS  Google Scholar 

  2. Mattock MB, Morrish NJ, Viberti G, Keen H, Fitzgerald AP, Jackson G . Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992; 41: 736–741.

    Article  CAS  Google Scholar 

  3. Stehouwer CD, Nauta JJ, Zeldenrust GC, Hackeng WH, Donker AJ, den Ottolander GJ . Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 1992; 340: 319–323.

    Article  CAS  Google Scholar 

  4. Dinneen SF, Gerstein HC . The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 1997; 157: 1413–1418.

    Article  CAS  Google Scholar 

  5. Yudkin JS, Forrest RD, Jackson CA . Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey Lancet 1988; 2: 530–533.

    CAS  PubMed  Google Scholar 

  6. Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE . Microalbuminuria as predictor of increased mortality in elderly people. BMJ 1990; 300: 297–300.

    Article  CAS  Google Scholar 

  7. Roest M, Banga JD, Janssen WM, Grobbee DE, Sixma JJ, de Jong PE et al. Excessive urinary albumin levels are associated with future cardiovascular mortality in postmenopausal women. Circulation 2001; 103: 3057–3061.

    Article  CAS  Google Scholar 

  8. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001; 286: 421–426.

    Article  CAS  Google Scholar 

  9. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002; 106: 1777–1782.

    Article  CAS  Google Scholar 

  10. Stehouwer CD, Lambert J, Donker AJ, van Hinsbergh VW . Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res 1997; 34: 55–68.

    Article  CAS  Google Scholar 

  11. Pedrinelli R, Dell'Omo G, Penno G, Mariani M . Non-diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease. Vasc Med 2001; 6: 257–264.

    Article  CAS  Google Scholar 

  12. Feldt-Rasmussen B . Microalbuminuria, endothelial dysfunction and cardiovascular risk. Diabetes Metab 2000; 26 (Suppl 4): 64–66.

    CAS  PubMed  Google Scholar 

  13. Strauss RS, Pollack HA . Epidemic increase in childhood overweight, 1986–1998. JAMA 2001; 286: 2845–2848.

    Article  CAS  Google Scholar 

  14. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 2002; 346: 802–810.

    Article  CAS  Google Scholar 

  15. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004; 350: 2362–2374.

    Article  CAS  Google Scholar 

  16. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R et al. CDC growth charts: United States. Adv Data 2000; 314: 1–27.

    Google Scholar 

  17. de Vegt F, Dekker JM, Ruhe HG, Stehouwer CD, Nijpels G, Bouter LM et al. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 1999; 42: 926–931.

    Article  CAS  Google Scholar 

  18. Matsuda M, DeFronzo RA . Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.

    Article  CAS  Google Scholar 

  19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  20. Valensi P, Assayag M, Busby M, Paries J, Lormeau B, Attali JR . Microalbuminuria in obese patients with or without hypertension. Int J Obes Relat Metab Disord 1996; 20: 574–579.

    CAS  PubMed  Google Scholar 

  21. Gerstein HC, Mann JF, Pogue J, Dinneen SF, Halle JP, Hoogwerf B et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care 2000; 23 (Suppl 2): B35–B39.

    PubMed  Google Scholar 

  22. Mykkanen L, Zaccaro DJ, Wagenknecht LE, Robbins DC, Gabriel M, Haffner SM . Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 1998; 47: 793–800.

    Article  CAS  Google Scholar 

  23. Abuaisha B, Kumar S, Malik R, Boulton AJ . Relationship of elevated urinary albumin excretion to components of the metabolic syndrome in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1998; 39: 93–99.

    Article  CAS  Google Scholar 

  24. Cirillo M, Senigalliesi L, Laurenzi M, Alfieri R, Stamler J, Stamler R et al. Microalbuminuria in nondiabetic adults: relation of blood pressure, body mass index, plasma cholesterol levels, and smoking: The Gubbio Population Study. Arch Intern Med 1998; 158: 1933–1939.

    Article  CAS  Google Scholar 

  25. Pannacciulli N, Cantatore FP, Minenna A, Bellacicco M, Giorgino R, De Pergola G . Urinary albumin excretion is independently associated with C-reactive protein levels in overweight and obese nondiabetic premenopausal women. J Intern Med 2001; 250: 502–507.

    Article  CAS  Google Scholar 

  26. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M . Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229–234.

    Article  CAS  Google Scholar 

  27. Haffner SM, Gonzales C, Valdez RA, Mykkanen L, Hazuda HP, Mitchell BD et al. Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 1993; 36: 1002–1006.

    Article  CAS  Google Scholar 

  28. Saydah SH, Loria CM, Eberhardt MS, Brancati FL . Subclinical states of glucose intolerance and risk of death in the US. Diabetes Care 2001; 24: 447–453.

    Article  CAS  Google Scholar 

  29. Tapp RJ, Shaw JE, Zimmet PZ, Balkau B, Chadban SJ, Tonkin AM et al. Albuminuria is evident in the early stages of diabetes onset: results from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Am J Kidney Dis 2004; 44: 792–798.

    Article  Google Scholar 

  30. Mykkanen L, Haffner SM, Kuusisto J, Pyorala K, Laakso M . Microalbuminuria precedes the development of NIDDM. Diabetes 1994; 43: 552–557.

    Article  CAS  Google Scholar 

  31. Meigs JB, D'Agostino Sr RB, Nathan DM, Rifai N, Wilson PW . Longitudinal association of glycemia and microalbuminuria: the Framingham Offspring Study. Diabetes Care 2002; 25: 977–983.

    Article  Google Scholar 

  32. Sasso FC, Carbonara O, Nasti R, Campana B, Marfella R, Torella M et al. Glucose metabolism and coronary heart disease in patients with normal glucose tolerance. JAMA 2004; 291: 1857–1863.

    Article  CAS  Google Scholar 

  33. Donahue RP, Abbott RD, Reed DM, Yano K . Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 1987; 36: 689–692.

    Article  CAS  Google Scholar 

  34. Csernus K, Lanyi E, Erhardt E, Molnar D . Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr 2005; 164: 44–49.

    Article  CAS  Google Scholar 

  35. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M . Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003; 290: 486–494.

    Article  CAS  Google Scholar 

  36. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF . High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997; 96: 25–28.

    Article  CAS  Google Scholar 

  37. Ceriello A, Piconi L, Quagliaro L, Wang Y, Schnabel CA, Ruggles JA et al. Effects of pramlintide on postprandial glucose excursions and measures of oxidative stress in patients with type 1 diabetes. Diabetes Care 2005; 28: 632–637.

    Article  CAS  Google Scholar 

  38. Yeckel CW, Weiss R, Dziura J, Taksali SE, Dufour S, Burgert TS et al. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents. J Clin Endocrinol Metab 2004; 89: 1096–1101.

    Article  CAS  Google Scholar 

  39. Parvanova A, Iliev I, Filipponi M, Dimitrov BD, Vedovato M, Tiengo A et al. Insulin resistance and proliferative retinopathy: a cross-sectional, case–control study in 115 patients with type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 4371–4376.

    Article  CAS  Google Scholar 

  40. Vedovato M, Lepore G, Coracina A, Dodesini AR, Jori E, Tiengo A et al. Effect of sodium intake on blood pressure and albuminuria in type 2 diabetic patients: the role of insulin resistance. Diabetologia 2004; 47: 300–303.

    Article  CAS  Google Scholar 

  41. Yu Y, Suo L, Yu H, Wang C, Tang H . Insulin resistance and endothelial dysfunction in type 2 diabetes patients with or without microalbuminuria. Diabetes Res Clin Pract 2004; 65: 95–104.

    Article  CAS  Google Scholar 

  42. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB . The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med 2003; 163: 427–436.

    Article  Google Scholar 

  43. Bigazzi R, Bianchi S, Campese VM, Baldari G . Prevalence of microalbuminuria in a large population of patients with mild to moderate essential hypertension. Nephron 1992; 61: 94–97.

    Article  CAS  Google Scholar 

  44. Agrawal B, Berger A, Wolf K, Luft FC . Microalbuminuria screening by reagent strip predicts cardiovascular risk in hypertension. J Hypertens 1996; 14: 223–228.

    Article  CAS  Google Scholar 

  45. Jager A, Kostense PJ, Ruhe HG, Heine RJ, Nijpels G, Dekker JM et al. Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and all-cause mortality, especially among hypertensive subjects: five-year follow-up of the Hoorn Study. Arterioscler Thromb Vasc Biol 1999; 19: 617–624.

    Article  CAS  Google Scholar 

  46. Haffner SM, Stern MP, Gruber MK, Hazuda HP, Mitchell BD, Patterson JK . Microalbuminuria. Potential marker for increased cardiovascular risk factors in nondiabetic subjects? Arteriosclerosis 1990; 10: 727–731.

    Article  CAS  Google Scholar 

  47. Kuusisto J, Mykkanen L, Pyorala K, Laakso M . Hyperinsulinemic microalbuminuria. A new risk indicator for coronary heart disease. Circulation 1995; 91: 831–837.

    Article  CAS  Google Scholar 

  48. Bianchi S, Bigazzi R, Quinones Galvan A, Muscelli E, Baldari G, Pecori N et al. Insulin resistance in microalbuminuric hypertension. Sites and mechanisms. Hypertension 1995; 26: 789–795.

    Article  CAS  Google Scholar 

  49. Forsblom CM, Eriksson JG, Ekstrand AV, Teppo AM, Taskinen MR, Groop LC . Insulin resistance and abnormal albumin excretion in non-diabetic first-degree relatives of patients with NIDDM. Diabetologia 1995; 38: 363–369.

    Article  CAS  Google Scholar 

  50. Cowell CT, Rogers S, Silink M . First morning urinary albumin concentration is a good predictor of 24-h urinary albumin excretion in children with type 1 (insulin-dependent) diabetes. Diabetologia 1986; 29: 97–99.

    Article  CAS  Google Scholar 

  51. Zelmanovitz T, Gross JL, Oliveira JR, Paggi A, Tatsch M, Azevedo MJ . The receiver operating characteristics curve in the evaluation of a random urine specimen as a screening test for diabetic nephropathy. Diabetes Care 1997; 20: 516–519.

    Article  CAS  Google Scholar 

  52. Bakker AJ . Detection of microalbuminuria. Receiver operating characteristic curve analysis favors albumin-to-creatinine ratio over albumin concentration. Diabetes Care 1999; 22: 307–313.

    Article  CAS  Google Scholar 

  53. Adelman RD, Restaino IG, Alon US, Blowey DL . Proteinuria and focal segmental glomerulosclerosis in severely obese adolescents. J Pediatr 2001; 138: 481–485.

    Article  CAS  Google Scholar 

  54. Romundstad S, Holmen J, Hallan H, Kvenild K, Kruger O, Midthjell K . Microalbuminuria, cardiovascular disease and risk factors in a nondiabetic/nonhypertensive population. The Nord-Trondelag Health Study (HUNT, 1995–97), Norway. J Intern Med 2002; 252: 164–172.

    Article  CAS  Google Scholar 

  55. de Zeeuw D . Albuminuria, not only a cardiovascular/renal risk marker, but also a target for treatment? Kidney Int Suppl 2004; 92: S2–S6.

    Article  CAS  Google Scholar 

  56. de Zeeuw D . Should albuminuria be a therapeutic target in patients with hypertension and diabetes? Am J Hypertens 2004; 17: S11–S15.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants RO1-HD40787, RO1-HD28016 and K24-HD01464 (to Dr Caprio), K12-DK63709 (to Dr Tamborlane), MO1-RR00125 and MO1-RR06022 from the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T S Burgert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgert, T., Dziura, J., Yeckel, C. et al. Microalbuminuria in pediatric obesity: prevalence and relation to other cardiovascular risk factors. Int J Obes 30, 273–280 (2006). https://doi.org/10.1038/sj.ijo.0803136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803136

Keywords

This article is cited by

Search

Quick links