Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis

Abstract

In recent years, the adipose tissue has emerged as an important endocrine organ. It is now recognized that besides storing energy the adipocytes also secrete several bioactive peptides, collectively called adipocytokines. Among these adipocytokines, leptin, the product of the ob gene, has been extensively investigated over the last decade. Skeletal muscle and adipose tissue, two major tissues involved in the regulation of glucose and fatty acids metabolism, have been consistently demonstrated to be directly affected by leptin. By binding to its receptors located in skeletal muscle and fat cells, leptin promotes energy dissipation and prevents fatty acid accumulation and ‘lipotoxicity’ in these tissues. On the other hand, under conditions of peripheral leptin resistance, such as observed in obese humans, the activation of pathways involved in fatty acid oxidation may be impaired. This leads to intracellular accumulation of lipid intermediates and causes insulin resistance. This review examines the metabolic pathways that are directly activated by leptin and how it regulates glucose and fatty acids metabolism in skeletal muscle and fat tissue. Furthermore, the impact of peripheral leptin resistance in these tissues leading to dysfunctional metabolic adaptations is also discussed.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW . Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 2003; 27: 875–888.

    CAS  PubMed  Google Scholar 

  2. Margetic S, Gazzola C, Pegg GG, Hill RA . Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 2002; 26: 1407–1433.

    CAS  PubMed  Google Scholar 

  3. Considine RV, Caro JF . Leptin and the regulation of body weight. Int J Biochem Cell Biol 1997; 29: 1255–1272.

    CAS  PubMed  Google Scholar 

  4. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    CAS  PubMed  Google Scholar 

  5. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F . Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    CAS  Article  PubMed  Google Scholar 

  6. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM . Weight-reducing effects of the ob plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    CAS  Article  PubMed  Google Scholar 

  7. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P . Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995; 269: 546–549.

    CAS  Article  PubMed  Google Scholar 

  8. Levin N, Nelson C, Gurney A, Vandlen R, de Sauvage F . Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc Natl Acad Sci USA 1996; 93: 1726–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Moroe CA, Tepper RI . Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: 1263–1271.

    CAS  Article  PubMed  Google Scholar 

  10. Tartaglia LA . The leptin receptor. J Biol Chem 1997; 272: 6093–6096.

    CAS  PubMed  Google Scholar 

  11. Nakashima K, Narazaki M, Taga T . Leptin receptor (OB-R) oligomerizes with itself but not with its closely related cytokine signal transducer gp130. FEBS Lett 1997; 403: 79–82.

    CAS  PubMed  Google Scholar 

  12. Zabeau L, Lavens D, Peelman F, Eyckerman S, Vandekerckhove J, Tavernier J . The ins and outs of leptin receptor activation. FEBS Lett 2003; 546: 45–50.

    CAS  PubMed  Google Scholar 

  13. Chua Jr SC, Koutras IK, Han L, Liu SM, Kay J, Young SJ, Chung WK, Leibel RL . Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics 1997; 45: 264–270.

    CAS  PubMed  Google Scholar 

  14. Hoggard N, Mercer JG, Rayner DV, Moar K, Trayhurn P, Williams LM . Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun 1997; 232: 383–387.

    CAS  PubMed  Google Scholar 

  15. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM . Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

    CAS  PubMed  Google Scholar 

  16. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP . Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84: 491–495.

    CAS  PubMed  Google Scholar 

  17. Murakami T, Yamashita T, Lida M, Kuwajima M, Shima K . A short form of leptin receptor performs signal transduction. Biochem Biophys Res Commun 1997; 231: 26–29.

    CAS  PubMed  Google Scholar 

  18. Ge H, Huang L, Pourbahrami T, Li C . Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem 2002; 277: 45898–45903.

    CAS  PubMed  Google Scholar 

  19. Bjorbaek C, Khan BB . Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 2004; 59: 305–331.

    CAS  PubMed  Google Scholar 

  20. Luoh SM, Di Marco F, Levin N, Armanini M, Xie MH, Nelson C, Bennett GL, Williams M, Spencer SA, Gurney A, de Sauvage FJ . Cloning and characterization of a human leptin receptor using a biologically active leptin immunoadhesin. J Mol Endocrinol 1997; 18: 77–85.

    CAS  PubMed  Google Scholar 

  21. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC . Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 1996; 93: 6231–6235.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ceddia RB, Koistinen HA, Zierath JR, Sweeney G . Analysis of paradoxical observations on the association between leptin and insulin resistance. FASEB J 2002; 16: 1163–1176.

    CAS  PubMed  Google Scholar 

  23. Margetic S, Gazzola C, Pegg GG, Hill RA . Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 2002; 26: 1407–1433.

    CAS  PubMed  Google Scholar 

  24. Ceddia RB, William Jr WN, Curi R . The response of skeletal muscle to leptin. Front Biosci 2001; 6: D90–D97.

    CAS  PubMed  Google Scholar 

  25. Kahn BB, Flier JS . Obesity and insulin resistance. J Clin Invest 2000; 106: 473–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Perseghin G, Petersen K, Shulman GI . Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 2003; 27 (Suppl 3): S6–S11.

    CAS  PubMed  Google Scholar 

  27. Tataranni PA, Ravussin E . Variability in metabolic rate: biological sites of regulation. Int J Obes Relat Metab Disord 1995; 19 (Suppl 4): S102–S106.

    PubMed  Google Scholar 

  28. Ceddia RB, William Jr WN, Curi R . Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: evidence for an effect of leptin on glucose uptake and decarboxylation. Int J Obes Relat Metab Disord 1999; 23: 75–82.

    CAS  PubMed  Google Scholar 

  29. Harris RB . Acute and chronic effects of leptin on glucose utilization in lean mice. Biochem Biophys Res Commun 1998; 245: 502–509.

    CAS  PubMed  Google Scholar 

  30. Berti L, Kellerer M, Capp E, Haring HU . Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a P13-kinase mediated effect. Diabetologia 1997; 40: 606–609.

    CAS  PubMed  Google Scholar 

  31. Bates SH, Gardiner JV, Jones RB, Bloom SR, Bailey CJ . Acute stimulation of glucose uptake by leptin in L6 muscle cells. Horm Metab Res 2002; 34: 111–115.

    CAS  PubMed  Google Scholar 

  32. Curi R, Newsholme P, Newsholme EA . Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem J 1988; 250: 383–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dulloo AG, Stock MJ, Solinas G, Boss O, Montani JP, Seydoux J . Leptin directly stimulates thermogenesis in skeletal muscle. FEBS Lett 2002; 515: 109–113.

    CAS  PubMed  Google Scholar 

  34. Muoio DM, Dohm GL, Tapscott EB, Coleman RA . Leptin opposes insulin's effects on fatty acid partitioning in muscles isolated from obese ob/ob mice. Am J Physiol 1999; 276: E913–E921.

    CAS  PubMed  Google Scholar 

  35. Muoio DM, Dohm GL, Fiedorek Jr FT, Tapscott EB, Coleman RA, Dohn GL . Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 1997; 46: 1360–1363.

    CAS  PubMed  Google Scholar 

  36. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB . Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    CAS  PubMed  Google Scholar 

  37. Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ . Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 2002; 283: E187–E192.

    CAS  PubMed  Google Scholar 

  38. Steinberg GR, Dyck DJ . Development of leptin resistance in rat soleus muscle in response to high-fat diets. Am J Physiol Endocrinol Metab 2000; 279: E1374–E1382.

    CAS  PubMed  Google Scholar 

  39. Ramsay TG . Porcine leptin inhibits protein breakdown and stimulates fatty acid oxidation in C2C12 myotubes. J Anim Sci 2003; 81: 3046–3051.

    CAS  PubMed  Google Scholar 

  40. Martin III WH . Effects of acute and chronic exercise on fat metabolism. Exerc Sport Sci Rev 1996; 24: 203–231.

    PubMed  Google Scholar 

  41. Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU . Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 1997; 40: 1358–1362.

    CAS  PubMed  Google Scholar 

  42. Minokoshi Y, Kahn BB . Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem Soc Trans 2003; 31: 196–201.

    CAS  PubMed  Google Scholar 

  43. Winder WW . Roles of adenosine monophosphate-activated protein kinase in skeletal muscle: fatty acid oxidation, glucose transport, and gene regulation. Curr Opin Endocrinol Diabetes 2001; 8: 180–185.

    CAS  Google Scholar 

  44. Winder WW, Hardie DG, Mustard KJ, Greenwood LJ, Paxton BE, Park SH, Rubink DS, Taylor EB . Long-term regulation of AMP-activated protein kinase and acetyl-CoA carboxylase in skeletal muscle. Biochem Soc Trans 2003; 31: 182–185.

    CAS  PubMed  Google Scholar 

  45. Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ . Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 1997; 389: 374–377.

    CAS  PubMed  Google Scholar 

  46. Carling D, Fryer LG, Woods A, Daniel T, Jarvie SL, Whitrow H . Bypassing the glucose/fatty acid cycle: AMP-activated protein kinase. Biochem Soc Trans 2003; 31: 1157–1160.

    CAS  PubMed  Google Scholar 

  47. Unger RH . Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003; 144: 5159–5165.

    CAS  PubMed  Google Scholar 

  48. Munday MR . Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 2002; 30: 1059–1064.

    CAS  PubMed  Google Scholar 

  49. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH . Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997; 46: 983–988.

    CAS  PubMed  Google Scholar 

  50. Randle PJ . Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14: 263–283.

    CAS  PubMed  Google Scholar 

  51. Roden M . How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 2004; 19: 92–96.

    CAS  PubMed  Google Scholar 

  52. Shimabukuro M, Koyama K, Chen G, Wang MY, Trieu F, Lee Y, Newgard CB, Unger RH . Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 1997; 94: 4637–4641.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen G, Koyama K, Yuan X, Lee Y, Zhou YT, O'Doherty R, Newgard CB, Unger RH . Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci USA 1996; 93: 14795–14799.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Koyama K, Chen G, Lee Y, Unger RH . Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol 1997; 273: E708–E713.

    CAS  PubMed  Google Scholar 

  55. Wang ZW, Zhou YT, Kakuma T, Lee Y, Higa M, Kalra SP, Dube MG, Kalra PS, Unger RH . Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia. Proc Natl Acad Sci USA 1999; 96: 10373–10378.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Olsen GS, Hansen BF . AMP kinase activation ameliorates insulin resistance induced by free fatty acids in rat skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283: E965–E970.

    CAS  PubMed  Google Scholar 

  57. Randle PJ, Garland PB, Hales CN, Newsholme EA . The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1: 785–789.

    CAS  PubMed  Google Scholar 

  58. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI . Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48: 1270–1274.

    CAS  PubMed  Google Scholar 

  59. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI . Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277: 50230–50236.

    CAS  PubMed  Google Scholar 

  60. McGarry JD . Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7–18.

    CAS  PubMed  Google Scholar 

  61. Boden G . Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003; 111: 121–124.

    CAS  PubMed  Google Scholar 

  62. Sarmiento U, Benson B, Kaufman S, Ross L, Qi M, Scully S, DiPalma C . Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab Invest 1997; 77: 243–256.

    CAS  PubMed  Google Scholar 

  63. Zhou YT, Wang ZW, Higa M, Newgard CB, Unger RH . Reversing adipocyte differentiation: implications for treatment of obesity. Proc Natl Acad Sci USA 1999; 96: 2391–2395.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Walder K, Filippis A, Clark S, Zimmet P, Collier GR . Leptin inhibits insulin binding in isolated rat adipocytes. J Endocrinol 1997; 155: R5–R7.

    CAS  PubMed  Google Scholar 

  65. Perez C, Fernandez-Galaz C, Fernandez-Agullo T, Arribas C, Andres A, Ros M, Carrascosa JM . Leptin impairs insulin signaling in rat adipocytes. Diabetes 2004; 53: 347–353.

    CAS  PubMed  Google Scholar 

  66. Muller G, Ertl J, Gerl M, Preibisch G . Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 1997; 272: 10585–10593.

    CAS  PubMed  Google Scholar 

  67. Bai Y, Zhang S, Kim KS, Lee JK, Kim KH . Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J Biol Chem 1996; 271: 13939–13942.

    CAS  PubMed  Google Scholar 

  68. Ceddia RB, William Jr WN, Lima FB, Curi R . Leptin inhibits insulin-stimulated incorporation of glucose into lipids and stimulates glucose decarboxylation in isolated rat adipocytes. J Endocrinol 1998; 158: R7–R9.

    CAS  PubMed  Google Scholar 

  69. Ceddia RB, William Jr WN, Lima FB, Flandin P, Curi R, Giacobino JP . Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes. Eur J Biochem 2000; 267: 5952–5958.

    CAS  PubMed  Google Scholar 

  70. Wang MY, Lee Y, Unger RH . Novel form of lipolysis induced by leptin. J Biol Chem 1999; 274: 17541–17544.

    CAS  PubMed  Google Scholar 

  71. William Jr WN, Ceddia RB, Curi R . Leptin controls the fate of fatty acids in isolated rat white adipocytes. J Endocrinol 2002; 175: 735–744.

    CAS  PubMed  Google Scholar 

  72. Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R, Unger RH . Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci USA 2004; 101: 2058–2063.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Z, Zhou YT, Kakuma T, Lee Y, Kalra SP, Kalra PS, Pan W, Unger RH . Leptin resistance of adipocytes in obesity: role of suppressors of cytokine signaling. Biochem Biophys Res Commun 2000; 227: 20–26.

    Google Scholar 

  74. Yasukawa H, Sasaki A, Yoshimura A . Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000; 18: 143–164.

    CAS  PubMed  Google Scholar 

  75. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS . Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1998; 1: 619–625.

    CAS  PubMed  Google Scholar 

  76. Eyckerman S, Broekaert D, Verhee A, Vandekerckhove J, Tavernier J . Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett 2000; 486: 33–37.

    CAS  PubMed  Google Scholar 

  77. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS . The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999; 274: 30059–30065.

    CAS  PubMed  Google Scholar 

  78. Huan JN, Li J, Han Y, Chen K, Wu N, Zhao AZ . Adipocyte-selective reduction of the leptin receptors induced by antisense RNA leads to increased adiposity, dyslipidemia, and insulin resistance. J Biol Chem 2003; 278: 45638–45650.

    CAS  PubMed  Google Scholar 

  79. Abernathy RP, Black DR . Healthy body weights: an alternative perspective. Am J Clin Nutr 1996; 63 (3 Suppl): 448S–451S.

    CAS  PubMed  Google Scholar 

  80. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S . Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    CAS  PubMed  Google Scholar 

  81. Considine RV, Caro JF . Leptin and the regulation of body weight. Int J Biochem Cell Biol 1997; 29: 1255–1272.

    CAS  PubMed  Google Scholar 

  82. Frederich RC, Lollmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, Flier JS . Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest 1995; 96: 1658–1663.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF . Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–295.

    CAS  PubMed  Google Scholar 

  84. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M . Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999; 282: 1568–1575.

    CAS  PubMed  Google Scholar 

  85. Myers Jr MG . Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 2004; 59: 287–304.

    CAS  PubMed  Google Scholar 

  86. Jequier E . Pathways to obesity. Int J Obes Relat Metab Disord 2002; 26 (Suppl 2): S12–S17.

    CAS  PubMed  Google Scholar 

  87. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS . Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004; 10: 734–738.

    CAS  PubMed  Google Scholar 

  88. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A . Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 2004; 10: 739–743.

    CAS  PubMed  Google Scholar 

  89. Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF . Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 1997; 46: 1087–1093.

    CAS  PubMed  Google Scholar 

  90. Kieffer TJ, Habener JF . The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 2000; 278: E1–E14.

    CAS  PubMed  Google Scholar 

  91. Ceddia RB, William Jr WN, Carpinelli AR, Curi R . Modulation of insulin secretion by leptin. Gen Pharmacol 1999; 32: 233–237.

    CAS  PubMed  Google Scholar 

  92. Ceddia RB, Lopes G, Souza HM, Borba-Murad GR, William Jr WN, Bazotte RB, Curi R . Acute effects of leptin on glucose metabolism of in situ rat perfused livers and isolated hepatocytes. Int J Obes Relat Metab Disord 1999; 23: 1207–1212.

    CAS  PubMed  Google Scholar 

  93. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP . Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544–1548.

    CAS  PubMed  Google Scholar 

  94. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK . TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 2001; 276: 47771–47774.

    CAS  PubMed  Google Scholar 

  95. Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D . Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 2000; 6: 1401–1412.

    CAS  PubMed  Google Scholar 

  96. Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG . The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 1992; 68: 545–560.

    CAS  PubMed  Google Scholar 

  97. Lavoie C, Chevet E, Roy L, Tonks NK, Fazel A, Posner BI, Paiement J, Bergeron JJ . Tyrosine phosphorylation of p97 regulates transitional endoplasmic reticulum assembly in vitro. Proc Natl Acad Sci USA 2000; 97: 13637–13642.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ahren B, Scheurink AJ . Marked hyperleptinemia after high-fat diet associated with severe glucose intolerance in mice. Eur J Endocrinol 1998; 139: 461–467.

    CAS  PubMed  Google Scholar 

  99. Khan AS, Vanden Heuvel JP . Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 2003; 14: 554–567.

    CAS  PubMed  Google Scholar 

  100. Eric Duplus E, Forest C . Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol 2002; 64: 893–901.

    PubMed  Google Scholar 

  101. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD . Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 1988; 37: 1020–1024.

    CAS  PubMed  Google Scholar 

  102. Gordon ES . Non-sterified fatty acids in blood of obese and lean individuals. Am J Clin Nutr 1960; 8: 740–747.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R B Ceddia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ceddia, R. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes 29, 1175–1183 (2005). https://doi.org/10.1038/sj.ijo.0803025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803025

Keywords

  • leptin
  • insulin
  • adipocyte
  • fatty acids
  • leptin resistance

Further reading

Search

Quick links