Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Adiponectin receptor gene expression in human skeletal muscle cells is not regulated by fibrates and thiazolidinediones

Abstract

BACKGROUND:

Thiazolidinediones as PPARγ agonists and fibrates as PPARα agonists improve insulin sensitivity in insulin-responsive tissues. Recent data show an induction of adiponectin receptor 2 (AdipoR2) by PPARα and PPARγ agonists in human macrophages.

OBJECTIVE:

In this study, we examined the effects of thiazolidinediones and fibrates on the expression of adiponectin receptors in human skeletal muscle cells, an important cell type in the context of insulin resistance.

RESULTS AND METHODS:

In vitro differentiated human myotubes treated with troglitazone or rosiglitazone (20 h) showed no significant changes in AdipoR1 and AdipoR2 mRNA expression. PPARγ activation was controlled by determination of PPARγ mRNA induction. Likewise, differentiated myotubes treated with Wy-14,643 or fenofibrate (20 h) revealed no significant regulation of AdipoR1 and AdipoR2 mRNA. PPARα activation was assessed by measuring PDHK4 mRNA expression.

CONCLUSION:

Induction of AdipoR gene expression in human skeletal muscle cells is not involved in the insulin-sensitizing effects of thiazolidinediones or fibrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chandran M, Phillips S, Ciaraldi T, Henry R . Adiponectin: more than just another fat cell hormone? Diabetes Care 2003; 26: 2442–2450.

    Article  CAS  Google Scholar 

  2. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T . Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762–769.

    Article  CAS  Google Scholar 

  3. Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo RA, Mandarino LJ, Ravussin E . Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of type 2 diabetes. Diabetologia 2004; 47: 816–820.

    Article  CAS  Google Scholar 

  4. Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, Boirie Y, Vidal H . Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of type 2 diabetic patients. Diabetologia 2004; 47: 917–925.

    Article  CAS  Google Scholar 

  5. Chinetti G, Zawadski C, Fruchart JC, Staels B . Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ and LXR. Biochem Biophys Res Commun 2004; 31: 151–158.

    Article  Google Scholar 

  6. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE, Sewter CP, Lazar MA, Chatterjee VK, ÓRahilly S . Activators of peroxisome proliferator-activated receptor γ have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997; 100: 3149–3153.

    Article  CAS  Google Scholar 

  7. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA . An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPARγ). J Biol Chem 1995; 270: 12953–12956.

    Article  CAS  Google Scholar 

  8. Spiegelman BM . PPARγ: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507–514.

    Article  CAS  Google Scholar 

  9. Stumvoll M . Thiazolidinediones—some recent developments. Expert Opin Investig Drugs 2003; 12: 1179–1187.

    Article  CAS  Google Scholar 

  10. Fruchart JC, Duriez P, Staels B . Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999; 10: 245–257.

    Article  CAS  Google Scholar 

  11. Ye JM, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EW . Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin-sensitivity in high fat-fed rats: comparison with PPAR-γ activation. Diabetes 2001; 50: 411–417.

    Article  CAS  Google Scholar 

  12. Moller DE, Berger JP . Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes Relat Metab Disord 2003; 27: 17–21.

    Article  Google Scholar 

  13. Krützfeld J, Kausch C, Volk A, Klein HH, Rett K, Häring HU, Stumvoll M . Insulin signaling and action in cultured skeletal muscle cells from lean healthy subjects with high and low insulin sensitivity. Diabetes 2000; 49: 992–998.

    Article  Google Scholar 

  14. Wahl HG, Kausch C, Machicao F, Rett K, Stumvoll M, Häring HU . Troglitazone downregulates delta-6 desaturase gene expression in human skeletal muscle cell cultures. Diabetes 2002; 51: 1060–1065.

    Article  CAS  Google Scholar 

  15. Park KS, Ciaraldi TP, Lindgren K, Abrams-Carter L, Mudaliar S, Nikoulina SE, Tufari SR, Veerkamp JH, Vidal-Puig A, Henry RR . Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor γ. J Clin Endocrinol Metab 1998; 83: 2830–2835.

    CAS  PubMed  Google Scholar 

  16. Kausch C, Kruetzfeld J, Witke A, Rettig A, Bachmann O, Rett K, Matthaei S, Machicao F, Häring HU, Stumvoll M . Effects of troglitazone on cellular differentiation, insulin signalling, and glucose metabolism in cultured human skeletal muscle cells. Biochem Biophys Res Commun 2000; 280: 664–674.

    Article  Google Scholar 

  17. Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, Kraus WE, Dohm GL . Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 2002; 51: 901–909.

    Article  CAS  Google Scholar 

  18. Burant CF, Sreenan S, Hirano K, Tai TA, Lohmiller J, Lukens J, Davidson NO, Ross S, Graves RA . Troglitazone action is independent of adipose tissue. J Clin Invest 1997; 100: 2900–2908.

    Article  CAS  Google Scholar 

  19. Park KS, Ciaraldi TP, Abrams-Carter L, Mudaliar S, Nikoulina SE, Henry RR . Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese type II diabetic subjects. J Clin Endocrinol Metab 1998; 83: 1636–1643.

    CAS  PubMed  Google Scholar 

  20. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y . PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50: 2094–2099.

    Article  CAS  Google Scholar 

  21. Katsuki A, Sumida Y, Murata K, Furuta M, Araki-Sasaki R, Tsuchihashi K, Hori Y, Yano Y, Gabazza EC, Adachi Y . Troglitazone reduces plasma levels of tumor necrosis factor-alpha in obese patients with type 2 diabetes. Diabetes Obes Metab 2000; 2: 189–1869.

    Article  CAS  Google Scholar 

  22. Spiegelman BM, Flier JS . Adipogenesis and obesity: rounding out the big picture. Cell 1996; 87: 377–389.

    Article  CAS  Google Scholar 

  23. Hofmann C, Lorenz K, Braithwaite SS, Colca JR, Palazuk BJ, Hotamisligil SG, Spiegelman BM . Altered gene expression for tumor necrosis factor-α and its receptor during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134: 264–270.

    Article  CAS  Google Scholar 

  24. Szalokowski D, White-Carrington S, Berger J, Zhang B . Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-α on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995; 136: 1474–1481.

    Article  Google Scholar 

  25. Rieusset J, Auwerx J, Vidal H . Regulation of gene expression by activation of the peroxisome proliferator-activated receptor gamma with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun 1999; 265: 265–271.

    Article  CAS  Google Scholar 

  26. De Vos P, Lefebvre AM, Miller SG, Guerre-Millo M, Wong K, Saladin R, Hamann LG, Staels B, Briggs MR, Auwerx J . Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98: 1004–1009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the research volunteers for their participation. This study was supported in part by grants from the Deutsche Forschungsgesellschaft (KFO 114/1-1) and the University of Tübingen (F1284193 fortüne program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-U Häring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaltenbach, S., Staiger, H., Weisser, M. et al. Adiponectin receptor gene expression in human skeletal muscle cells is not regulated by fibrates and thiazolidinediones. Int J Obes 29, 760–765 (2005). https://doi.org/10.1038/sj.ijo.0802957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802957

Keywords

This article is cited by

Search

Quick links