Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus

Abstract

BACKGROUND: It is widely accepted that increasing adiposity is associated with insulin resistance and increased risk of type II diabetes. The predominant paradigm used to explain this link is the portal/visceral hypothesis. This hypothesis proposes that increased adiposity, particularly in the visceral depots, leads to increased free-fatty acid flux and inhibition of insulin-action via Randle's effect in insulin-sensitive tissues.

OBJECTIVES: In this review, limitations of this paradigm will be discussed and two other paradigms that may explain established links between adiposity and insulin resistance/diabetes will be presented.

CONCLUSIONS: The novel paradigms of ectopic fat and fat cell as an endocrine organ probably will constitute a new framework for the study of the links between our obesigenic environment and the risk of developing diabetes. (a) Ectopic fat storage syndrome. Three lines of evidence support this concept. Firstly, failure to develop adequate adipose tissue mass (also known as ‘lipodystrophy’) results in severe insulin resistance and diabetes. This is thought to be the result of ectopic storage of lipid into liver, skeletal muscle and the pancreatic insulin-secreting beta cell. Secondly, most obese patients also shunt lipid into the skeletal muscle, the liver and probably the beta cell. The importance of this finding is exemplified by several studies demonstrating that the degree of lipid infiltration into skeletal muscle and liver highly correlates with insulin resistance. Thirdly, increased fat cell size is highly associated with insulin resistance and the development of diabetes. Increased fat cell size may represent the failure of the adipose tissue mass to expand and therefore to accommodate an increased energy influx. Taken together, these observations support the ‘acquired lipodystrophy’ hypothesis as a link between adiposity and insulin resistance. Ectopic fat deposition is therefore the result of additive or synergistic effects including increased dietary intake, decreased fat oxidation and impaired adipogenesis. (b) Endocrine paradigm. This concept was developed in parallel with the ‘ectopic fat storage syndrome’ hypothesis. Adipose tissue secretes a variety of endocrine hormones such as leptin, interleukin-6, angiotensin II, adiponectin and resistin. From this viewpoint, adipose tissue plays a critical role as an endocrine gland, secreting numerous factors with potent effects on the metabolism of distant tissues.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, Wiedmeyer HM, Byrd-Holt DD . Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994 [see comments]. Diabetes Care 1998; 421: 518–524.

    Google Scholar 

  2. Knowler WC, Pettitt DJ, Savage PJ, Bennett PH . Diabetes incidence in Pima indians: contributions of obesity and parental diabetes. Am J Epidemiol 1981; 113: 144–156.

    CAS  PubMed  Google Scholar 

  3. Olefsky JM . LIlly lecture 1980. Insulin resistance and insulin action. An in vitro and in vivo perspective. Diabetes 1981; 30: 148–162.

    CAS  PubMed  Google Scholar 

  4. Reaven GM . Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.

    CAS  PubMed  Google Scholar 

  5. Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR . Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study [see comments]. Lancet 1992; 340: 925–929.

    CAS  PubMed  Google Scholar 

  6. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C . Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993; 329: 1988–1992.

    CAS  PubMed  Google Scholar 

  7. Rabinowitz D, Zierler KL . Forearm metabolism in obesity and its response to intra-arterial insulin. Characterization of insulin resistance and evidence for adaptive hyperinsulinism. J Clin Invest 1962; 41: 2173–2181.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Felig P, Wahren J, Hendler R, Brundin J . Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 1974; 53: 582–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Caro JF, Dohm LG, Pories WJ, Sinha MK . Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type II diabetes. Diabetes Metab Rev 1989; 5: 665–689.

    CAS  PubMed  Google Scholar 

  10. Clausen JO, Borch-Johnsen K, Ibsen H, Bergman RN, Hougaard P, Winther K, Pedersen O . Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians. Analysis of the impact of gender, body fat, physical fitness, and life-style factors. J Clin Invest 1996; 98: 1195–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kissebah AH, Peiris AN . Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 1989; 5: 83–109.

    CAS  PubMed  Google Scholar 

  12. Despres JP, Lemieux S, Lamarche B, Prud’homme D, Moorjani S, Brun LD, Gagne C, Lupien PJ . The insulin resistance-dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications. Int J Obes Relat Metab Disord 1995; 19 (Suppl 1): S76–S86.

    PubMed  Google Scholar 

  13. Banerji MA, Chaiken RL, Gordon D, Kral JG, Lebovitz HE . Does intra-abdominal adipose tissue in black men determine whether NIDDM is insulin-resistant or insulin-sensitive? Diabetes 1995; 44: 141–146.

    CAS  PubMed  Google Scholar 

  14. Albu JB, Murphy L, Frager DH, Johnson JA, Pi-Sunyer FX . Visceral fat and race-dependent health risks in obese nondiabetic premenopausal women. Diabetes 1997; 46: 456–462.

    CAS  PubMed  Google Scholar 

  15. Albu JB, Kovera AJ, Johnson JA . Fat distribution and health in obesity. Ann NY Acad Sci 2000; 904: 491–501.

    CAS  PubMed  Google Scholar 

  16. Randle PJ, Garland PB, Hales CN, Newsholme EA . The glucose fatty acid cycle: its role in insulin sensitivity and metabolic disturbances of diabetes mellitus. Lancet 1963; 1: 7285–7289.

    Google Scholar 

  17. Kelley DE, Mandarino LJ . Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49: 677–683.

    CAS  PubMed  Google Scholar 

  18. Bergman RN, Ader M . Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab 2000; 11: 351–356.

    CAS  PubMed  Google Scholar 

  19. Bjorntorp P . ‘Portal’ adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 1990; 10: 493–496.

    CAS  PubMed  Google Scholar 

  20. Kissebah AH, Krakower GR . Regional adiposity and morbidity. Physiol Rev 1994; 74: 761–811.

    CAS  PubMed  Google Scholar 

  21. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM . Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995; 96: 88–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE . Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46: 1579–1585.

    CAS  PubMed  Google Scholar 

  23. Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J, Volafova J, Bray GA . Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001; 50: 425–435.

    CAS  PubMed  Google Scholar 

  24. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM . Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes 1996; 45: 1684–1693.

    CAS  PubMed  Google Scholar 

  25. Marcus MA, Murphy L, Pi-Sunyer FX, Albu JB . Insulin sensitivity and serum triglyceride level in obese white and black women: relationship to visceral and truncal subcutaneous fat. Metabolism 1999; 48: 194–199.

    CAS  PubMed  Google Scholar 

  26. Kuhn TF . The structure of scientific revolutions, 2nd edn. The University of Chicago Press: Chicago; 1962.

    Google Scholar 

  27. Goodpaster BH, Kelley DE . Role of muscle in triglyceride metabolism. Curr Opin Lipidol 1998; 9: 231–236.

    CAS  PubMed  Google Scholar 

  28. Shulman GI . Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelley DE, Slasky BS, Janosky J . Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1991; 54: 509–515.

    CAS  PubMed  Google Scholar 

  30. Goodpaster BH, Thaete FL, Kelley DE . Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr 2000; 71: 885–892.

    CAS  PubMed  Google Scholar 

  31. Kelley DE, Goodpaster B, Wing RR, Simoneau JA . Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277: E1130–E1141.

    CAS  PubMed  Google Scholar 

  32. Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT . Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999; 276: E977–E989.

    CAS  PubMed  Google Scholar 

  33. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, Vanzulli A, Testolin G, Pozza G, Del Maschio A, Luzi L . Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48: 1600–1606.

    CAS  PubMed  Google Scholar 

  34. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI . Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999; 42: 113–116.

    CAS  PubMed  Google Scholar 

  35. Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, Maier T, Loviscach M, Stumvoll M, Claussen CD, Schick F, Haring HU, Jacob S . Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 2001; 50: 2579–2584.

    CAS  PubMed  Google Scholar 

  36. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL . Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 1999; 48: 839–847.

    CAS  PubMed  Google Scholar 

  37. Goodpaster BH, He J, Watkins S, Kelley DE . Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86: 5755–5761.

    CAS  PubMed  Google Scholar 

  38. Thamer C, Stumvoll M, Niess A, Tschritter O, Haap M, Becker R, Shirkavand F, Bachmann O, Rett K, Volk A, Haring H, Fritsche A . Reduced skeletal muscle oxygen uptake and reduced beta-cell function: two early abnormalities in normal glucose-tolerant offspring of patients with type 2 diabetes. Diabetes Care 2003; 26: 2126–2132.

    PubMed  Google Scholar 

  39. Ryysy L, Hakkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J, Yki-Jarvinen H . Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000; 49: 749–758.

    CAS  PubMed  Google Scholar 

  40. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H . Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002; 87: 3023–3028.

    CAS  PubMed  Google Scholar 

  41. Robbins DC, Danforth Jr E, Horton ES, Burse RL, Goldman RF, Sims EA . The effect of diet on thermogenesis in acquired lipodystrophy. Metabolism 1979; 28: 908–916.

    CAS  PubMed  Google Scholar 

  42. Robbins DC, Horton ES, Tulp O, Sims EA . Familial partial lipodystrophy: complications of obesity in the non-obese? Metabolism 1982; 31: 445–452.

    CAS  PubMed  Google Scholar 

  43. Reitman ML, Mason MM, Moitra J, Gavrilova O, Marcus-Samuels B, Eckhaus M, Vinson C . Transgenic mice lacking white fat: models for understanding human lipoatrophic diabetes. Ann NY Acad Sci 1999; 892: 289–296.

    CAS  PubMed  Google Scholar 

  44. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL . Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401: 73–76.

    CAS  PubMed  Google Scholar 

  45. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI . Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000; 275: 8456–8460.

    CAS  PubMed  Google Scholar 

  46. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, Vinson C, Eckhaus M, Reitman ML . Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105: 271–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Colombo C, Cutson JJ, Yamauchi T, Vinson C, Kadowaki T, Gavrilova O, Reitman ML . Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes 2002; 51: 2727–2733.

    CAS  PubMed  Google Scholar 

  48. Shulman GI . Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE, Sewter CP, Lazar MA, Chatterjee VK, O’Rahilly S . Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997; 100: 3149–3153.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Akazawa S, Sun F, Ito M, Kawasaki E, Eguchi K . Efficacy of troglitazone on body fat distribution in type 2 diabetes [In Process Citation]. Diabetes Care 2000; 23: 1067–1071.

    CAS  PubMed  Google Scholar 

  51. Bjorntorp P, Berchtold P, Tibblin G . Insulin secretion in relation to adipose tissue in men. Diabetes 1971; 20: 65–70.

    CAS  PubMed  Google Scholar 

  52. Schneider BS, Faust IM, Hemmes R, Hirsch J . Effects of altered adipose tissue morphology on plasma insulin levels in the rat. Am J Physiol 1981; 240: E358–E362.

    CAS  PubMed  Google Scholar 

  53. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE . Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    CAS  PubMed  Google Scholar 

  54. Czech MP . Cellular basis of insulin insensitivity in large rat adipocytes. J Clin Invest 1976; 57: 1523–1532.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E . A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 1995; 38: 1213–1217.

    CAS  PubMed  Google Scholar 

  56. Rangwala SM, Lazar MA . Transcriptional control of adipogenesis [In Process Citation]. Annu Rev Nutr 2000; 20: 535–559.

    CAS  PubMed  Google Scholar 

  57. Morrison RF, Farmer SR . Insights into the transcriptional control of adipocyte differentiation. J Cell Biochem 1999; 32–33 (Suppl): 59–67.

    Google Scholar 

  58. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR . Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  59. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM . Transcriptional regulation of adipogenesis. Genes Dev 2000; 14: 1293–1307.

    CAS  PubMed  Google Scholar 

  60. Nadler ST, Attie AD . Please pass the chips: genomic insights into obesity and diabetes. J Nutr 2001; 131: 2078–2081.

    CAS  PubMed  Google Scholar 

  61. Rosen ED, Spiegelman BM . Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000; 16: 145–171.

    CAS  PubMed  Google Scholar 

  62. Wolf G . The molecular mechanism of the stimulation of adipocyte differentiation by a glucocorticoid. Nutr Rev 1999; 57: 324–326.

    CAS  PubMed  Google Scholar 

  63. Auwerx J . PPARgamma, the ultimate thrifty gene. Diabetologia 1999; 42: 1033–1049.

    CAS  PubMed  Google Scholar 

  64. Aubert J, Dessolin S, Belmonte N, Li M, McKenzie FR, Staccini L, Villageois P, Barhanin B, Vernallis A, Smith AG, Ailhaud G, Dani C . Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. J Biol Chem 1999; 274: 24965–24972.

    CAS  PubMed  Google Scholar 

  65. Stephens JM, Butts M, Stone R, Pekala PH, Bernlohr DA . Regulation of transcription factor mRNA accumulation during 3T3-L1 preadipocyte differentiation by antagonists of adipogenesis. Mol Cell Biochem 1993; 123: 63–71.

    CAS  PubMed  Google Scholar 

  66. de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, Burkey BF . Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 2001; 50: 1863–1871.

    CAS  PubMed  Google Scholar 

  67. Hockings PD, Changani KK, Saeed N, Reid DG, Birmingham J, O’Brien P, Osborne J, Toseland CN, Buckingham RE . Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats. Diabetes Obes Metab 2003; 5: 234–243.

    CAS  PubMed  Google Scholar 

  68. Dobbins RL, Szczepaniak LS, Bentley B, Esser V, Myhill J, McGarry JD . Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 2001; 50: 123–130.

    CAS  PubMed  Google Scholar 

  69. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E . Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol 1990; 259: E650–E657.

    CAS  PubMed  Google Scholar 

  70. Seidell JC, Muller DC, Sorkin JD, Andres R . Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: the Baltimore Longitudinal Study on Aging. Int J Obes Relat Metab Disord 1992; 16: 667–674.

    CAS  PubMed  Google Scholar 

  71. Valtuena S, Salas-Salvado J, Lorda PG . The respiratory quotient as a prognostic factor in weight-loss rebound. Int J Obes Relat Metab Disord 1997; 21: 811–817.

    CAS  PubMed  Google Scholar 

  72. Perseghin G, Scifo P, Danna M, Battezzati A, Benedini S, Meneghini E, Del Maschio A, Luzi L . Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation. Am J Physiol Endocrinol Metab 2002; 283: E556–E564.

    CAS  PubMed  Google Scholar 

  73. Smith SR, de Jonge L, Zachwieja JJ, Roy H, Nguyen T, Rood JC, Windhauser MM, Bray GA . Fat and carbohydrate balances during adaptation to a high-fat. Am J Clin Nutr 2000; 71: 450–457.

    CAS  PubMed  Google Scholar 

  74. Berthon PM, Howlett RA, Heigenhauser GJ, Spriet LL . Human skeletal muscle carnitine palmitoyltransferase I activity determined in isolated intact mitochondria. J Appl Physiol 1998; 85: 148–153.

    CAS  PubMed  Google Scholar 

  75. Holloszy JO, Coyle EF . Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831–838.

    CAS  PubMed  Google Scholar 

  76. Goodpaster BH, Katsiaras A, Kelley DE . Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 2003; 52: 2191–2197.

    CAS  PubMed  Google Scholar 

  77. Helge JW, Dela F . Effect of training on muscle triacylglycerol and structural lipids: a relation to insulin sensitivity? Diabetes 2003; 52: 1881–1887.

    CAS  PubMed  Google Scholar 

  78. Gan SK, Kriketos AD, Ellis BA, Thompson CH, Kraegen EW, Chisholm DJ . Changes in aerobic capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in overweight and obese men. Diabetes Care 2003; 26: 1706–1713.

    CAS  PubMed  Google Scholar 

  79. Mascaro C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D . Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 1998; 273: 8560–8563.

    CAS  PubMed  Google Scholar 

  80. Lapsys NM, Kriketos AD, Lim-Fraser M, Poynten AM, Lowy A, Furler SM, Chisholm DJ, Cooney GJ . Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor gamma expression in human skeletal muscle [In Process Citation]. J Clin Endocrinol Metab 2000; 85: 4293–4297.

    CAS  PubMed  Google Scholar 

  81. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM . Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 1997; 94: 4318–4323.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vega RB, Huss JM, Kelly DP . The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 1868–1876.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP . Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis [In Process Citation]. J Clin Invest 2000; 106: 847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Knutti D, Kaul A, Kralli A . A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 2000; 20: 2411–2422.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kelley DE, He J, Menshikova EV, Ritov VB . Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51: 2944–2950.

    CAS  PubMed  Google Scholar 

  86. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ . Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003; 100: 8466–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    CAS  PubMed  Google Scholar 

  88. Obici S, Wang J, Chowdury R, Feng Z, Siddhanta U, Morgan K, Rossetti L . Identification of a biochemical link between energy intake and energy expenditure. J Clin Invest 2002; 109: 1599–1605.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI . Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Weyer C, Tataranni PA, Snitker S, Danforth Jr E, Ravussin E . Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 1998; 47: 1555–1561.

    CAS  PubMed  Google Scholar 

  91. Enocksson S, Shimizu M, Lonnqvist F, Nordenstrom J, Arner P . Demonstration of an in vivo functional beta 3-adrenoceptor in man. J Clin Invest 1995; 95: 2239–2245.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schiffelers SL, van Harmelen VJ, de Grauw HA, Saris WH, van Baak MA . Dobutamine as selective beta(1)-adrenoceptor agonist in in vivo studies on human thermogenesis and lipid utilization. J Appl Physiol 1999; 87: 977–981.

    CAS  PubMed  Google Scholar 

  93. Tataranni PA, Young JB, Bogardus C, Ravussin E . A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res 1997; 5: 341–347.

    CAS  PubMed  Google Scholar 

  94. Snitker S, Tataranni PA, Ravussin E . Respiratory quotient is inversely associated with muscle sympathetic nerve activity. J Clin Endocrinol Metab 1998; 83: 3977–3979.

    CAS  PubMed  Google Scholar 

  95. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T . The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    CAS  PubMed  Google Scholar 

  96. Smith SR, de Jonge L, Pellymounter M, Nguyen T, Harris R, York D, Redmann S, Rood J, Bray GA . Peripheral administration of human corticotropin-releasing hormone: a novel method to increase energy expenditure and fat oxidation in man. J Clin Endocrinol Metab 2001; 86: 1991–1998.

    CAS  PubMed  Google Scholar 

  97. Muoio DM, Dohm GL, Fiedorek Jr FT, Tapscott EB, Coleman RA, Dohn GL . Leptin directly alters lipid partitioning in skeletal muscle [published erratum appears in Diabetes 1997 Oct;46(10):1663]. Diabetes 1997; 46: 1360–1363.

    CAS  PubMed  Google Scholar 

  98. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T . The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    CAS  PubMed  Google Scholar 

  99. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW . Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82: 4196–4200.

    CAS  PubMed  Google Scholar 

  100. Berg AH, Combs TP, Du XL, Brownlee M, Scherer PE . The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 8: 947–953.

    Google Scholar 

  101. LaNoue KF, Martin LF . Abnormal A1 adenosine receptor function in genetic obesity. FASEB J 1994; 8: 72–80.

    CAS  PubMed  Google Scholar 

  102. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA . Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    CAS  PubMed  Google Scholar 

  103. Cianflone K, Maslowska M, Sniderman A . The acylation stimulating protein–adipsin system. Int J Obes Relat Metab Disord 1995; 19 (Suppl 1): S34–S38.

    PubMed  Google Scholar 

  104. Xue B, Moustaid N, Wilkison WO, Zemel MB . The agouti gene product inhibits lipolysis in human adipocytes via a Ca2+-dependent mechanism. FASEB J 1998; 12: 1391–1396.

    CAS  PubMed  Google Scholar 

  105. Ailhaud G, Fukamizu A, Massiera F, Negrel R, Saint-Marc P, Teboul M . Angiotensinogen, angiotensin II and adipose tissue development. Int J Obes Relat Metab Disord 2000; 24 (Suppl 4): S33–S35.

    CAS  PubMed  Google Scholar 

  106. Witthuhn BA, Bernlohr DA . Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine 2001; 14: 129–135.

    CAS  PubMed  Google Scholar 

  107. Serrero G, Lepak N . Endocrine and paracrine negative regulators of adipose differentiation. Int J Obes Relat Metab Disord 1996; 20 (Suppl 3): S58–S64.

    CAS  PubMed  Google Scholar 

  108. Tabata Y, Miyao M, Inamoto T, Ishii T, Hirano Y, Yamaoki Y, Ikada Y . De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng 2000; 6: 279–289.

    CAS  PubMed  Google Scholar 

  109. Ramsay TG, White ME, Wolverton CK . Insulin-like growth factor 1 induction of differentiation of porcine preadipocytes. J Anim Sci 1989; 67: 2452–2459.

    CAS  PubMed  Google Scholar 

  110. Wabitsch M, Heinze E, Debatin KM, Blum WF . IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes. Horm Metab Res 2000; 32: 555–559.

    CAS  PubMed  Google Scholar 

  111. Bruun JM, Pedersen SB, Richelsen B . Interleukin-8 production in human adipose tissue. Inhibitory effects of anti-diabetic compounds, the thiazolidinedione ciglitazone and the biguanide metformin. Horm Metab Res 2000; 32: 537–541.

    CAS  PubMed  Google Scholar 

  112. DiGirolamo M, Newby FD, Lovejoy J . Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J 1992; 6: 2405–2412.

    CAS  PubMed  Google Scholar 

  113. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue [published erratum appears in Nature 1995 Mar 30;374(6521):479] [see comments]. Nature 1994; 372: 425–432.

    CAS  PubMed  Google Scholar 

  114. Pages C, Valet P, Jeanneton O, Zakaroff-Girard A, Barbe P, Record M, Wolf C, Chevy F, Lafontan M, Saulnier-Blache JS . Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes: a paracrine signal for preadipocyte growth. Lipids 1999; 34 (Suppl): S79.

    CAS  PubMed  Google Scholar 

  115. Valet P, Pages C, Jeanneton O, Daviaud D, Barbe P, Record M, Saulnier-Blache JS, Lafontan M . Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J Clin Invest 1998; 101: 1431–1438.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S . Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 1996; 93: 106–110.

    CAS  PubMed  Google Scholar 

  117. Sul HS, Smas C, Mei B, Zhou L . Function of pref-1 as an inhibitor of adipocyte differentiation. Int J Obes Relat Metab Disord 2000; 24 (Suppl 4): S15–S19.

    CAS  PubMed  Google Scholar 

  118. Darimont C, Vassaux G, Ailhaud G, Negrel R . Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 1994; 135: 2030–2036.

    CAS  PubMed  Google Scholar 

  119. Berger A . Resistin: a new hormone that links obesity with type 2 diabetes. BMJ 2001; 322: 193.

    PubMed Central  Google Scholar 

  120. Lofgren P, van Harmelen V, Reynisdottir S, Naslund E, Ryden M, Rossner S, Arner P . Secretion of tumor necrosis factor-alpha shows a strong relationship to insulin-stimulated glucose transport in human adipose tissue. Diabetes 2000; 49: 688–692.

    CAS  PubMed  Google Scholar 

  121. Trayhurn P, Beattie JH . Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60: 329–339.

    CAS  PubMed  Google Scholar 

  122. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T . Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    CAS  PubMed  Google Scholar 

  123. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T . Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762–769.

    CAS  PubMed  Google Scholar 

  124. Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo RA, Mandarino LJ, Ravussin E . Adiponecting receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without family history of type 2 diabetes. Diabetologia 2004; 47: 816–820.

    CAS  PubMed  Google Scholar 

  125. Minokoshi Y, Kim YB, Peroni OD, Fryer L, Muller C, Carling D, Kahn B . Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    CAS  PubMed  Google Scholar 

  126. Rajkumar K, Modric T, Murphy LJ . Impaired adipogenesis in insulin-like growth factor binding protein-1 transgenic mice. J Endocrinol 1999; 162: 457–465.

    CAS  PubMed  Google Scholar 

  127. Margareto J, Aguado M, Oses-Prieto JA, Rivero I, Monge A, Aldana I, Marti A, Martinez JA . A new NPY-antagonist strongly stimulates apoptosis and lipolysis on white adipocytes in an obesity model. Life Sci 2000; 68: 99–107.

    CAS  PubMed  Google Scholar 

  128. Labelle M, Boulanger Y, Fournier A, St Pierre S, Savard R . Tissue-specific regulation of fat cell lipolysis by NPY in 6-OHDA-treated rats. Peptides 1997; 18: 801–808.

    CAS  PubMed  Google Scholar 

  129. Boston BA . The role of melanocortins in adipocyte function. Ann NY Acad Sci 1999; 885: 75–84.

    CAS  PubMed  Google Scholar 

  130. Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL, Laharrague P, Casteilla L, Penicaud L . A role for preadipocytes as macrophage-like cells. FASEB J 1999; 13: 305–312.

    CAS  PubMed  Google Scholar 

  131. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA . Inhibition of adipogenesis by Wnt signaling. Science 2000; 289: 950–953.

    CAS  PubMed  Google Scholar 

  132. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, Ide T, Kubota N, Terauchi Y, Tobe K, Miki H, Tsuchida A, Akanuma Y, Nagai R, Kimura S, Kadowaki T . The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) Deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276: 41245–41254.

    CAS  PubMed  Google Scholar 

  133. Bathalon GP, Hays NP, Meydani SN, Dawson-Hughes B, Schaefer EJ, Lipman R, Nelson M, Greenberg AS, Roberts SB . Metabolic, psychological, and health correlates of dietary restraint in healthy postmenopausal women. J Gerontol A 2001; 56: M206–M211.

    CAS  Google Scholar 

  134. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML . Circulating ghrelin levels are decreased in human obesity. Diabetes 2001; 50: 707–709.

    PubMed  Google Scholar 

  135. Abbott CR, Rossi M, Kim M, AlAhmed SH, Taylor GM, Ghatei MA, Smith DM, Bloom SR . Investigation of the melanocyte stimulating hormones on food intake. Lack of evidence to support a role for the melanocortin-3-receptor. Brain Res 2000; 869: 203–210.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Ravussin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heilbronn, L., Smith, S. & Ravussin, E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes 28, S12–S21 (2004). https://doi.org/10.1038/sj.ijo.0802853

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802853

Keywords

  • adipogenesis
  • visceral fat
  • lipodystrophy
  • insulin resistance
  • intramyocellular fat
  • intrahepatic fat

Further reading

Search

Quick links