Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Antiobesity and antidiabetic effects of brain-derived neurotrophic factor in rodent models of leptin resistance

Abstract

OBJECTIVE: Obesity in rodents and humans is mostly associated with elevated plasma leptin concentrations, suggesting a new pathological concept of ‘leptin resistance’. We have demonstrated that brain-derived neurotrophic factor (BDNF) can improve obesity and diabetes of C57BL/KsJ db/db (db/db) mice. In this study, we investigated whether or not BDNF is effective in two different models of leptin resistance, an acquired model and a genetic model.

DESIGN: C57BL/6J mice rendered obese by consumption of a high-fat diet (diet-induced obesity (DIO) mice) were used as an acquired model and lethal yellow agouti mice (KKAy mice) as a genetic model of leptin resistance. Food intake and glucose metabolism were studied after acute or repetitive administration of BDNF.

RESULTS:Intraperitoneal administration of BDNF (10 mg/kg, twice/day) significantly reduced cumulative food intake of DIO and KKAy mice, whereas they were unresponsive to leptin administration. Repetitive subcutaneous administration of BDNF (10 mg/kg daily for 6 days) reduced food intake and improved impaired glucose tolerance in DIO mice. Pair feeding of vehicle-treated DIO mice with the same amount of chow consumed by the BDNF-treated group did not improve the impaired glucose homeostasis, indicating that the antidiabetic effect is not due to decreased food intake. We also observed that BDNF is effective in improving obesity and diabetes of KKAy mice.

CONCLUSION:This study demonstrated antiobesity and antidiabetic effects of BDNF in two different models of leptin resistance, thereby suggesting the therapeutic potential of BDNF in the treatment of leptin-resistant obesity and diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 4
Figure 1
Figure 3
Figure 5

Similar content being viewed by others

References

  1. Spiegelman BM, Flier JS . Obesity and the regulation of energy balance. Cell 2001; 104: 531–543.

    Article  CAS  Google Scholar 

  2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  Google Scholar 

  3. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F . Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    Article  CAS  Google Scholar 

  4. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM . Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    Article  CAS  Google Scholar 

  5. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S . Congenital leptin deficiency is associated with severe early onset obesity in humans. Nature 1997; 387: 903–908.

    Article  CAS  Google Scholar 

  6. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD . A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18: 213–215.

    Article  CAS  Google Scholar 

  7. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O'Rahilly S . Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341: 879–884.

    Article  CAS  Google Scholar 

  8. Considine RV, Considine EL, Williams CJ, Nyce MR, Magosin SA, Bauer TL, Rosato EL, Colberg J, Caro JF . Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity. J Clin Invest 1995; 95: 2986–2988.

    Article  CAS  Google Scholar 

  9. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF . Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–295.

    Article  CAS  Google Scholar 

  10. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M . Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999; 282: 1568–1575.

    Article  CAS  Google Scholar 

  11. Hukshorn CJ, Saris WH, Westerterp-Plantenga MS, Farid AR, Smith FJ, Campfield LA . Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J Clin Endocrinol Metab 2000; 85: 4003–4009.

    Article  CAS  Google Scholar 

  12. Lewin GR, Barde YA . Physiology of the neurotrophins. Annu Rev Neurosci 1996; 19: 289–317.

    Article  CAS  Google Scholar 

  13. Ono M, Ichihara J, Nonomura T, Itakura Y, Taiji M, Nakayama C, Noguchi H . Brain-derived neurotrophic factor reduces blood glucose level in obese diabetic mice but not in normal mice. Biochem Biophys Res Commun 1997; 238: 633–637.

    Article  CAS  Google Scholar 

  14. Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, Wiegand SJ, Wong V . Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-leprdb/leprdb mice. Diabetes 1999; 48: 588–594.

    Article  CAS  Google Scholar 

  15. Ono M, Itakura Y, Nonomura T, Nakagawa T, Nakayama C, Taiji M, Noguchi H . Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism 2000; 49: 129–133.

    Article  CAS  Google Scholar 

  16. Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, Inoue T, Nakayama C, Taiji M, Noguchi H . Brain-derived neurotrophic factor (BDNF) regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes 2000; 49: 436–444.

    Article  CAS  Google Scholar 

  17. Tsuchida A, Nonomura T, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H . Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic mice. Int J Obes Relat Metab Disord 2001; 25: 1286–1293.

    Article  CAS  Google Scholar 

  18. Barbacid M . The trk family of neurotrophin receptors. J Neurobiol 1994; 25: 1386–1403.

    Article  CAS  Google Scholar 

  19. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Cornelia W, Koliatsos VE, Tessarollo L . Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 1999; 96: 15239–15244.

    Article  CAS  Google Scholar 

  20. Kernie SG, Liebl D, Parada L . BDNF regulates eating behavior and locomotor activity in mice. EMBO J 2000; 19: 1290–1300.

    Article  CAS  Google Scholar 

  21. Chagnon YC, Bouchard C . Genetics of obesity: advances from rodent studies. Trends Genet 1996; 12: 441–444.

    Article  CAS  Google Scholar 

  22. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feingros MN . Diet-induced type 2 diabetes in C57BL/6J mice. Diabetes 1998; 37: 1163–1167.

    Article  Google Scholar 

  23. Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis Jr HR . Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 1997; 99: 385–390.

    Article  CAS  Google Scholar 

  24. Widdowson PS, Upton R, Buckingham R, Arch J, Williams G . Inhibition of food response to intracerebroventricular injection of leptin is attenuated in rats with diet-induced obesity. Diabetes 1997; 46: 1782–1785.

    Article  CAS  Google Scholar 

  25. Lin S, Thomas TC, Storlien LH, Huang XF . Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord 2000; 24: 639–646.

    Article  CAS  Google Scholar 

  26. Ogawa Y, Masuzaki H, Hosoda K, Aizawa-Abe M, Suga J, Suda M, Ebihara K, Iwais H, Matsuoka N, Satoh N, Odaka H, Kasuga H, Fujisawa Y, Inoue G, Nishimura H, Yoshimasa Y, Nakao K . Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes 1999; 48: 1822–1829.

    Article  CAS  Google Scholar 

  27. Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, Luther M, Chen W, Woychik RP, Wilkison WO . Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994; 371: 799–802.

    Article  CAS  Google Scholar 

  28. Masuzaki H, Ogawa Y, Aizawa-Abe M, Hosoda K, Suga J, Ebihara K, Satoh N, Iwai H, Inoue G, Nishimura H, Yoshimasa Y, Nakao K . Glucose metabolism and insulin sensitivity in transgenic mice overexpressing leptin with lethal yellow agouti mutation: usefulness of leptin for the treatment of obesity-associated diabetes. Diabetes 1999; 48: 1615–1622.

    Article  CAS  Google Scholar 

  29. Satoh N, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Yoshimasa Y, Nakao K . Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci Lett 1998; 249: 107–110.

    Article  CAS  Google Scholar 

  30. El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS . Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 2000; 105: 1827–1832.

    Article  CAS  Google Scholar 

  31. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, Lai CF, Tartaglia LA . The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA 1996; 93: 8374–8378.

    Article  CAS  Google Scholar 

  32. Bjørbæk C, Uotani S, da Silva B, Flier JS . Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997; 272: 32686–32695.

    Article  Google Scholar 

  33. Kim YB, Uotani S, Pierroz DD, Flier JS, Kahn BB . In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues: overlapping but distinct pathways from insulin. Endocrinology 2000; 141: 2328–2339.

    Article  CAS  Google Scholar 

  34. Marsh HN, Scholz WK, Lamballe F, Klein R, Nanduri V, Barbacid M, Palfrey HC . Signal transduction events mediated by the BDNF receptor gp145 TrkB in primary hippocampal pyramidal cell culture. J Neurosci 1993; 13: 4281–4292.

    Article  CAS  Google Scholar 

  35. Nakamura T, Sanokawa R, Sasaki Y, Ayusawa D, Oishi M, Mori N . N-Shc: a neural-specific adapter molecule that mediates signaling from neurotrophin/Trk to Ras/MAPK pathway. Oncogene 1996; 13: 1111–1121.

    CAS  PubMed  Google Scholar 

  36. Yamada M, Ohnishi H, Sano S, Nakatani A, Ikeuchi T, Hatanaka H . Insulin receptor substrate (IRS)-1 and IRS-2 are tyrosine-phosphorylated and associated with phosphatidylinositol 3-kinase in response to brain-derived neurotrophic factor in cultured cerebral cortical neurons. J Biol Chem 1997; 272: 30334–30339.

    Article  CAS  Google Scholar 

  37. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW . Melanocortin receptors in leptin effects. Nature 1997; 390: 349.

    Article  CAS  Google Scholar 

  38. Gloaguen I, Costa P, Demartis A, Lazzaro D, Marco AD, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LHT, Cortese R, Ciliberto G, Laufer R . Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci USA 1997; 94: 6456–6461.

    Article  CAS  Google Scholar 

  39. Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ . Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA 2001; 98: 4652–4657.

    Article  CAS  Google Scholar 

  40. Henderson JT, Seniuk NA, Richardson PM, Gauldie J, Roder JC . Systemic administration of ciliary neurotrophic factor induces cachexia in rodents. J Clin Invest 1994; 93: 2632–2638.

    Article  CAS  Google Scholar 

  41. Kishimoto T, Akira S, Narazaki M, Taga T . Interleukin-6 family of cytokines and gp130. Blood 1995; 86: 1243–1254.

    CAS  PubMed  Google Scholar 

  42. Ip NY, Yancopoulos GD . The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu Rev Neurosci 1996; 19: 491–515.

    Article  CAS  Google Scholar 

  43. Gearing DP, Thut CJ, VandeBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman D, Beckmann MP . Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J 1991; 10: 2839–2848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S Hidaka and M Shintani for valuable discussions. This work is supported in part by research grants from the Japanese Ministry of Education, Science, Sports and Culture, and the Japanese Ministry of Health and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ogawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, T., Ogawa, Y., Ebihara, K. et al. Antiobesity and antidiabetic effects of brain-derived neurotrophic factor in rodent models of leptin resistance. Int J Obes 27, 557–565 (2003). https://doi.org/10.1038/sj.ijo.0802265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802265

Keywords

This article is cited by

Search

Quick links