Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Habitual fat intake and basal fat oxidation in obese and non-obese Caucasians

Abstract

OBJECTIVE: To examine the relationship between habitual fat intake and basal fat oxidation in obese and non-obese Caucasian men and women.

METHODS: Habitual fat intake was assessed by 7-day weighed dietary records and resting fat oxidation was determined after an overnight fast in 132 weight stable non-diabetic subjects (38 males, 94 females). All subjects were characterized for weight, height, waist-to-hip ratio, physical activity, plasma glucose and insulin response to an oral glucose load, plasma catecholamine and leptin levels. Under-reporters, defined according to plausibility of the relationship between energy expenditure and energy intake, were excluded from the analyses.

RESULTS: The mean age was 53.1±10.6 y (19–72 y) and mean body mass index (BMI) was 30.7±5.8 kg/m2 (19.4–45.8 kg/m2). Sixty-eight subjects were obese (BMI>30 kg/m2). Univariate regression analysis revealed a significant, albeit modest, relationship between absolute fat intake and BMI (r2=0.06; P≤0.05) but not between fat intake and fat mass (r2=0.026; P=0.08). However, multiple regression analysis revealed significant effects of body fat mass (FM) and sex on basal fat oxidation (bFO) explaining 33% of the variation of bFO (P≤0.0001; √s.e.=18.0 g/24 h). In univariate regression analysis, habitual fat intake was significantly related to adjusted fat oxidation, explaining 12% of the variation (P≤0.0001; √s.e.=11.7 g/24 h).

CONCLUSION: Habitual fat intake has a significant, albeit modest, effect on basal fat oxidation, even when adjusted for sex and body FM. The rather modest effect of habitual fat intake on fat oxidation may in part explain the increased propensity to gain FM on a high-fat diet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bolton-Smith C, Woodward M . Dietary composition and fat to sugar ratios in relation to obesity Int J Obes Relat Metab Disord 1994 18: 820–828.

    CAS  PubMed  Google Scholar 

  2. Astrup A, Ryan L, Grunwald GK, Storgaard M, Saris W, Melanson E, Hill JO . The role of dietary fat in body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies Br J Nutr 2000 83(Suppl 1): S25–32.

    CAS  PubMed  Google Scholar 

  3. Blundell JE, MacDiarmid JI . Fat as a risk factor for overconsumption: satiation, satiety, and patterns of eating J Am Diet Assoc 1997 97(Suppl 7): S63–69.

    Article  CAS  PubMed  Google Scholar 

  4. Flatt JP . Importance of nutrient balance in body weight regulation Diabetes Metab Rev 1988 4: 571–581.

    Article  CAS  PubMed  Google Scholar 

  5. Flatt JP . The difference in the storage capacities for carbohydrate and for fat, and its implications in the regulation of body weight Ann NY Acad Sci 1987 499: 104–123.

    Article  CAS  PubMed  Google Scholar 

  6. Schrauwen P, van Marken Lichtenbelt WD, Saris WH, Westerterp KR . Changes in fat oxidation in response to a high-fat diet Am J Clin Nutr 1997 66: 276–282.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas CD, Peters JC, Reed GW, Abumrad NN, Sun M, Hill JO . Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans Am J Clin Nutr 1992 55: 934–942.

    Article  CAS  PubMed  Google Scholar 

  8. Flatt JP, Ravussin E, Acheson KJ, Jequier E . Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances J Clin Invest 1985 76: 1019–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. WHO . Consultation on Obesity 3–5 June 1997 Obesity—preventing and managing the global epidemic. WHO: Geneva

  10. The sixth report of the Joint National Committee on prevention, detection, evaluation and treatment of high blood pressure Arch Intern Med 1997 157: 2413–2446.

  11. NIH Consensus statement . Bioelectrical impedance analysis in body composition measurement. National Institutes of Health Technology Assessment Conference Statement. December 12–14, 1994. Nutrition 1996 12: 749–762.

    Article  Google Scholar 

  12. Kunz I, Schorr U, Klaus S, Sharma AM . Resting metabolic rate and substrate use in obesity hypertension Hypertension 2000 36: 26–32.

    Article  CAS  PubMed  Google Scholar 

  13. Scheunert A, Trautmann A (eds) . Lehrbuch der Veterniär-Physiologie, 6th edn. Verlag Paul Parey: Berlin 1976.

    Google Scholar 

  14. Livesey G, Elia M . Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels Am J Clin Nutr 1988 47: 608–628.

    Article  CAS  PubMed  Google Scholar 

  15. Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, Prentice AM . Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording Eur J Clin Nutr 1991 45: 569–581.

    CAS  PubMed  Google Scholar 

  16. Mennen LI, Jackson M, Cade J, Mbanya JC, Lafay L, Sharma S, Walker S, Chungong S, Wilks R, Balkau B, Forrester T, Cruickshank JK . Underreporting of energy intake in four populations of African origin Int J Obes Relat Metab Disord 2000 24: 882–887.

    Article  CAS  PubMed  Google Scholar 

  17. World Health Organisation (WHO) . Diabetes mellitus Report of a WHO study group. Technical Report Series 17 WHO: Geneva 1985 45–51.

    Google Scholar 

  18. Voss S, Kroke A, Klipstein-Grobusch K, Boeing H . Obesity as a major determinant of underreporting in a self-administered food frequency questionnaire: results from the EPIC-Potsdam Study Z Ernahrungswiss 1997 36: 229–236.

    Article  CAS  PubMed  Google Scholar 

  19. DeLany JP, Lovejoy JC . Energy expenditure Endocrinol Metab Clin N Am 1996 25: 831–846.

    Article  CAS  Google Scholar 

  20. Black AE, Coward WA, Cole TJ, Prentice AM . Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements Eur J Clin Nutr 1996 50: 72–92.

    CAS  PubMed  Google Scholar 

  21. Cooling J, Blundell J . Differences in energy expenditure and substrate oxidation between habitual high fat and low fat consumers (phenotypes) Int J Obes Relat Metab Disord 1998 22: 612–618.

    Article  CAS  PubMed  Google Scholar 

  22. Schutz Y, Flatt JP, Jequier E . Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity Am J Clin Nutr 1989 50: 307–314.

    Article  CAS  PubMed  Google Scholar 

  23. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jequier E . Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man Am J Clin Nutr 1988 48: 240–247.

    Article  CAS  PubMed  Google Scholar 

  24. Swinburn BA, Ravussin E . Energy and macronutrient metabolism Baillières Clin Endocrinol Metab 1994 8: 527–548.

    Article  CAS  PubMed  Google Scholar 

  25. Gomez-TD, Hirvonen-MD, Keesey-RE, Atkinson-RL . Diet composition determines: 24-hr respiratory quotient (RQ) but not fasting RQ in female rats fed isocaloric high-fat diets Int J Obes Relat Metab Disord 1998 22(Suppl 3): S76.

    Google Scholar 

  26. Astrup A, Buemann B, Western P, Toubro S, Raben A, Christensen NJ . Obesity as an adaptation to a high-fat diet: evidence from a cross-sectional study Am J Clin Nutr 1994 59: 350–355.

    Article  CAS  PubMed  Google Scholar 

  27. Schutz Y, Tremblay A, Weinsier RL, Nelson KM . Role of fat oxidation in the long-term stabilization of body weight in obese women Am J Clin Nutr 1992 55: 670–674.

    Article  CAS  PubMed  Google Scholar 

  28. Nagy TR, Goran MI, Weinsier RL, Toth MJ, Schutz Y, Poehlman ET . Determinants of basal fat oxidation in healthy Caucasians J Appl Physiol 1996 80: 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  29. Flatt JP . Dietary fat, carbohydrate balance, and weight maintenance: effects of exercise Am J Clin Nutr 1987 45: 296–306.

    Article  CAS  PubMed  Google Scholar 

  30. Bonadonna RC, Groop LC, Zych K, Shank M, DeFronzo RA . Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans Am J Physiol 1990 259: E736–750.

    CAS  PubMed  Google Scholar 

  31. Myers RJ, Klesges RC, Eck LH, Hanson CL, Klem ML . Accuracy of self-reports of food intake in obese and normal-weight individuals: effects of obesity on self-reports of dietary intake in adult females Am J Clin Nutr 1988 48: 1248–1251.

    Article  CAS  PubMed  Google Scholar 

  32. Lindroos AK, Lissner L, Sjöström L . Validity and reproducibility of self-administered dietary questionnaire in obese and non-obese subjects Eur J Clin Nutr 1993 47: 461–481.

    CAS  PubMed  Google Scholar 

  33. Ravussin E, Swinburn BA . Pathophysiology of obesity Lancet 1992 340: 404–408.

    Article  CAS  PubMed  Google Scholar 

  34. Ravussin E, Tataranni PA . Dietary fat and human obesity J Am Diet Assoc 1997 97: S42–46.

    Article  CAS  PubMed  Google Scholar 

  35. Johnson RK, Goran MI, Poehlman ET . Correlates of over- and underreporting of energy intake in healthy older men and women Am J Clin Nutr 1994 59: 1286–1290.

    Article  CAS  PubMed  Google Scholar 

  36. Ballard-Barbash R, Graubard I, Krebs-Smith SM, Schatzkin A, Thompson FE . Contribution of dieting to the inverse association between energy intake and body mass index Eur J Clin Nutr 1996 50: 98–106.

    CAS  PubMed  Google Scholar 

  37. Braam LA, Ocke MC, Bueno-de-Mesquita HB, Seidell JC . Determinants of obesity-related underreporting of energy intake Am J Epidemiol 1998 147: 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  38. Bandini LG, Schoeller DA, Cyr HN, Dietz WH . Validity of reported energy intake in obese and nonobese adolescents Am J Clin Nutr 1990 52: 421–425.

    Article  CAS  PubMed  Google Scholar 

  39. Prentice AM, Black AE, Coward WA, Davies HL, Goldberg GR, Murgatroyd PR, Ashford J, Sawyer M, Whitehead RG . High levels of energy expenditure in obese women Br Med J (Clin Res Edn) 1986 292: 983–987.

    Article  CAS  Google Scholar 

  40. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C . Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber J Clin Invest 1986 78: 1568–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coakley EH, Kawachi I, Manson JE, Speizer FE, Willet WC, Colditz GA . Lower levels of physical functioning are associated with higher body weight among middle-aged and older women Int J Obes Relat Metab Disord 1998 22: 958–965.

    Article  CAS  PubMed  Google Scholar 

  42. Tataranni PA, Ravussin E . Variability in metabolic rate: biological sites of regulation Int J Obes Relat Metab Disord 1995 19(Suppl 4): S102–106.

    PubMed  Google Scholar 

  43. Lichtman SW, Pisarska K, Berman ER, Pestone M, Dowling H, Offenbacher E, Weisel H, Heshka S, Matthews DE, Heymsfield SB . Discrepancy between self-reported and actual caloric intake and exercise in obese subjects New Engl J Med 1992 327: 1893–1898.

    Article  CAS  PubMed  Google Scholar 

  44. Johansson L, Solvoll K, Bjorneboe GE, Drevon CA . Under- and overreporting of energy intake related to weight status and lifestyle in a nationwide sample Am J Clin Nutr 1998 68: 266–274.

    Article  CAS  PubMed  Google Scholar 

  45. Romieu I, Willett WC, Stampfer MJ, Colditz GA, Sampson L, Rosner B, Hennekens CH, Speizer FE . Energy intake and other determinants of relative weight Am J Clin Nutr 1988 47: 406–412.

    Article  CAS  PubMed  Google Scholar 

  46. Larson DE, Tataranni PA, Ferraro RT, Ravussin E . Ad libitum food intake on a ‘cafeteria diet’ in Native American women: relations with body composition and 24-h energy expenditure Am J Clin Nutr 1995 62: 911–917.

    Article  CAS  PubMed  Google Scholar 

  47. Black AE, Goldberg GR, Jebb SA, Livingstone MB, Cole TJ, Prentice AM . Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys Eur J Clin Nutr 1991 45: 583–599.

    CAS  PubMed  Google Scholar 

  48. Heitmann BL, Lissner L, Osler M . Do we eat less fat, or just report so? Int J Obes Relat Metab Disord 2000 24: 435–442.

    Article  CAS  PubMed  Google Scholar 

  49. Tataranni PA, Ravussin E . Effect of fat intake on energy balance Ann NY Acad Sci 1997 819: 37–43.

    Article  CAS  PubMed  Google Scholar 

  50. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E . Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ Am J Physiol 1990 259: E650–657.

    CAS  PubMed  Google Scholar 

  51. Smith SR, de Jonge L, Zachwieja JJ, Roy H, Nguyen T, Rood JC, Windhauser MM, Bray GA . Fat and carbohydrate balances during adaptation to a high-fat Am J Clin Nutr 2000 71: 450–457.

    Article  CAS  PubMed  Google Scholar 

  52. Flatt JP . Body composition, respiratory quotient, and weight maintenance Am J Clin Nutr 1995 62: 1107S–1117S.

    Article  CAS  PubMed  Google Scholar 

  53. Calles-Escandon J, Driscoll P . Diet and body composition as determinants of basal lipolysis in humans Am J Clin Nutr 1995 61: 543–548.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brigitte Geue, Monika Hantschke-Brüggemann, Bärbel Girresch, Lisa Wolf and Klaus Schlotter for their excellent technical help. The study was supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF, 685.20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AM Sharma.

Appendix

Appendix

Calculation of the cut-off value of the energy intake (EI)/basal metabolic rate (BMR) ratio in weight-stable subjects

Calculation of the cut-off value of the EI/BMR ratio:

TEE (total energy expenditure)/BMR is the average physical activity level (PALcalc) of our study population (1.340). s.d.min is −3 for 99.7% confidence limits, n is the number of individuals (=132) and CV includes the inter-individual variation in energy intake and the number of the recorded days. For measured basal metabolic rate and 7 day, the coefficient of variation is 15.4%.15 RMR/BMR was corrected by multiplying with 0.9 as that basal metabolic rate is 10% lower than resting metabolic rate.

The equation for the cut-off is:

This cut-off value requires the definition of a minimum plausible level of energy expenditure (or energy intake). Results falling below this limit should be recognized as being incompatible with long-term maintenance of energy balance and therefore long-term survival.15

Energy requirements (ER) and reported energy were calculated with recorded physical activity (PALrec), resting metabolic rate (RMR) and energy intake (EI):

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, I., Schorr, U., Römmling, K. et al. Habitual fat intake and basal fat oxidation in obese and non-obese Caucasians. Int J Obes 26, 150–156 (2002). https://doi.org/10.1038/sj.ijo.0801869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801869

Keywords

This article is cited by

Search

Quick links