Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Skeletal muscle oxidative capacity in rats fed high-fat diet

Abstract

OBJECTIVE: To investigate whether young rats respond to high-fat feeding through changes in energy efficiency and fuel partitioning at the level of skeletal muscle, to avoid obesity development. In addition, to establish whether the two mitochondrial subpopulations, which exist in skeletal muscle, ie subsarcolemmal and intermyofibrillar, are differently affected by high-fat feeding.

DESIGN: Weaning rats were fed a low-fat or a high-fat diet for 15 days.

MEASUREMENTS: Energy balance and lipid partitioning in the whole animal. State 3 and state 4 oxygen consumption rates in whole skeletal muscle homogenate. State 3 and state 4 oxygen consumption rates, membrane potential and uncoupling effect of palmitate in subsarcolemmal and intermyofibrillar mitochondria from skeletal muscle.

RESULTS: Rats fed a high-fat diet showed an increased whole body lipid utilization. Skeletal muscle NAD-linked and lipid oxidative capacity significantly increased at the whole-tissue level, due to an increase in lipid oxidative capacity in subsarcolemmal and intermyofibrillar mitochondria and in NAD-linked activity only in intermyofibrillar ones. In addition, rats fed a high-fat diet showed an increase in the uncoupling effect of palmitate in both the mitochondrial populations.

CONCLUSIONS: In young rats fed a high-fat diet, skeletal muscle contributes to enhanced whole body lipid oxidation through an increased mitochondrial capacity to use lipids as metabolic fuels, associated with a decrease in energy coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ravussin E, Swinburn BA . Energy metabolism. In: AJ Stunkard, TA Wadden (eds). Obesity: theory and therapy Raven Press: New York 1993 97–123.

    Google Scholar 

  2. Levin BE, Finnegan MB, Triscari J, Sullivan AC . Brown adipose tissue and metabolic features of chronic diet-induced obesity Am J Physiol 1985 248: R717–R723.

    CAS  PubMed  Google Scholar 

  3. Levin BE, Triscari J, Sullivan AC . Metabolic features of diet-induced obesity without hyperphagia in young rats Am J Physiol 1986 251: R433–R440.

    CAS  PubMed  Google Scholar 

  4. Chang S, Graham B, Yakubu F, Lin D, Peters JC, Hill JO . Metabolic differences between obesity-prone and obesity-resistant rats Am J Physiol 1990 259: R1103–R1110.

    CAS  PubMed  Google Scholar 

  5. Iossa S, Lionetti L, Mollica MP, Crescenzo R, Barletta A, Liverini G . Effect of long-term high-fat feeding on energy balance and liver oxidative activity in rats Br J Nutr 2000 84: 377–385.

    CAS  PubMed  Google Scholar 

  6. Liverini G, Iossa S, Mollica MP, Lionetti L, Barletta A . Hepatic fatty acid-supported respiration in rats fed an energy-dense diet Cell Biochem Func 1996 14: 283–289.

    CAS  Google Scholar 

  7. Iossa S, Mollica MP, Lionetti L, Barletta A, Liverini G . Energy balance and liver respiratory activity in rats fed on an energy dense-diet Br J Nutr 1997 77: 99–105.

    Article  CAS  PubMed  Google Scholar 

  8. Rolfe DFS, Brown GC . Cellular energy utilization and molecular origin of standard metabolic rate in mammals Physiol Rev 1997 77: 731–758.

    Article  CAS  PubMed  Google Scholar 

  9. Miller WC, Bryce GR, Conlee RK . Adaptation to a high-fat diet that increases exercise endurance in male rats J Appl Physiol 1984 56: 78–83.

    Article  CAS  PubMed  Google Scholar 

  10. Nemeth PM, Rosser BWC, Choksi RM, Norris BJ, Baker KM . Metabolic response to a high-fat diet in neonatal and adult rat muscle Am J Physiol 1992 262: C282–C286.

    Article  CAS  PubMed  Google Scholar 

  11. Gayles EC, Pagliassotti MJ, Prach PA, Koppenhafer TA, Hill JO . Contribution of energy intake and tissue enzymatic profile to body weight gain in high-fat-fed rats Am J Physiol 1997 272: R188–R194.

    CAS  PubMed  Google Scholar 

  12. Cheng B, Karamizrak O, Noakes TD, Dennis SC, Lambert EV . Time course of the effects of a high-fat diet and voluntary exercise on muscle enzyme activity in Long-Evans rats Physiol Behav 1997 61: 701–705.

    Article  CAS  PubMed  Google Scholar 

  13. Mannaerts GP, Debeer LJ, Thomas J, De Schepper PJ . Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofribrate-treated rats J Biol Chem 1979 254: 4585–4595.

    CAS  PubMed  Google Scholar 

  14. Palmer JW, Tandler B, Hoppel CL . Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle J Biol Chem 1977 252: 8731–8739.

    CAS  PubMed  Google Scholar 

  15. Krieger DA, Tate CA, McMillin-Wood J, Booth FW . Populations of rat skeletal muscle mitochondria after exercise and immobilization J Appl Physiol 1980 48: 23–28.

    Article  CAS  PubMed  Google Scholar 

  16. Cogswell AM, Stevens RJ, Hood DA . Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions Am J Physiol 1993 264: C383–C389.

    Article  CAS  PubMed  Google Scholar 

  17. Bizeau ME, Willis WT, Hazel JR . Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria J Appl Physiol 1998 85: 1279–1284.

    Article  CAS  PubMed  Google Scholar 

  18. Yajid F, Mercier JG, Mercier BM, Dubouchaud H, Prefaut C . Effect of 4 wk of hindlimb suspension on skeletal muscle mitochondrial respiration in rats J Appl Physiol 1998 84: 479–485.

    Article  CAS  PubMed  Google Scholar 

  19. Pullar JD, Webster AJF. The energy cost of fat and protein deposition in the rat . Br J Nutr 1977 37: 355–363.

  20. Rothwell NJ, Stock MJ, Warwick BP . Energy balance and brown fat activity in rats fed cafeteria diets or high fat, semisynthetic diets at several levels of intake Metabolism Disord 1985 34: 474–480.

    CAS  Google Scholar 

  21. Folch J, Lees M, Stanley GHS . A simple method for the isolation and purification of total lipids from animal tissues J Biol Chem 1957 226: 497–510.

    CAS  PubMed  Google Scholar 

  22. Brooks SPJ, Lampi BJ, Sarwar G, Botting HG . A comparison of methods for determining total body protein Anal Biochem 1995 226: 26–30.

    Article  CAS  PubMed  Google Scholar 

  23. Nedergaard J . The relationship between extramitochondrial Ca2+ concentration, respiratory rate, and membrane potential in mitochondria from brown adipose tissue of the rat Eur J Biochem 1983 133: 185–191.

    Article  CAS  PubMed  Google Scholar 

  24. Hartree EF . Determination of protein: a modification of the Lowry method that gives a linear photometric response Anal Biochem 1972 48: 422–427.

    Article  CAS  PubMed  Google Scholar 

  25. Lee YP, Lardy HA . Influence of thyroid hormones of L-alpha-glycerophosphate and other dehydrogenases in various organs of the rat J Biol Chem 1965 240: 1427–1436.

    CAS  PubMed  Google Scholar 

  26. Srere PA . Citrate synthase Meth Enzymol 1969 13: 3–5.

    Article  CAS  Google Scholar 

  27. Iossa S, Mollica MP, Lionetti L, Barletta A, Liverini G . Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet Int J Obes Relat Metab Disord 1995 19: 539–543.

    CAS  PubMed  Google Scholar 

  28. Helge JW, Ayre K, Chaunchaiyakul S, Hulbert AJ, Kiens B, Storlien LH . Endurance in high-fat-fed rats: effects of carbohydrate content and fatty acid profile J Appl Physiol 1998 85: 1342–1348.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi M, Hood DA . Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria J Biol Chem 1996 247: 27285–27291.

    Article  Google Scholar 

  30. Freake HC, Oppenheimer JH . Thermogenesis and thyroid function A Rev Nutr 1995 15: 263–291.

    Article  CAS  Google Scholar 

  31. Desvergne B, Wahli W . Peroxisome proliferator-activated receptors: nuclear control of metabolism Endocr Rev 1999 20: 649–688.

    CAS  PubMed  Google Scholar 

  32. Michalik L, Wahli W . Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions Curr Opin Biotechnol 1999 10: 564–570.

    Article  CAS  PubMed  Google Scholar 

  33. Simonyan RA, Skulachev VP . Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein FEBS Lett 1998 436: 81–84.

    Article  CAS  PubMed  Google Scholar 

  34. Jaburek M, Varecha M, Gimeno RE, Dembski M, Jezek P, Zhang M, Burn P, Tartaglia LA, Garlid KD . Transport function and regulation of mitochondrial uncoupling proteins 2 and 3 J Biol Chem 1999 274: 26003–26007.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuda J, Hosoda K, Itoh H, Son C, Doi K, Tanaka T, Fukunaga Y, Inoue G, Nishmura H, Yoshimasa Y, Yamori Y, Nakao K . Cloning of rat uncoupling protein 3 and uncoupling protein 2 c-DNAs: their gene expression in rats fed high fat diet FEBS Lett 1997 418: 200–204.

    Article  CAS  PubMed  Google Scholar 

  36. Nemeth PM, Norris BJ, Solanki L, Kelly AM . Metabolic specialiation in fast and slow muscles of the developing rat J Neurosci 1989 9: 2336–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iossa S, Lionetti L, Mollica MP, Barletta A, Liverini G . Fat balance and hepatic mitochondrial function in response to fat feeding in mature rats Int J Obes Relat Metab Disord 1999 23: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor Antonio Barletta for helpful discussion. This work was supported by University ‘Federico II’ of Naples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Liverini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iossa, S., Mollica, M., Lionetti, L. et al. Skeletal muscle oxidative capacity in rats fed high-fat diet. Int J Obes 26, 65–72 (2002). https://doi.org/10.1038/sj.ijo.0801844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801844

Keywords

This article is cited by

Search

Quick links