Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men

Abstract

OBJECTIVE: To examine the association between baseline testosterone levels and changes in visceral adiposity in Japanese-American men.

DESIGN: Prospective observational study.

SUBJECTS: Second-generation Japanese-American males enrolled in a community-based population study.

MEASUREMENTS: At baseline, 110 men received a 75 g oral glucose tolerance test (OGTT), and an assessment of body mass index (BMI); visceral adiposity measured as intra-abdominal fat area (IAF) using computed tomography (CT); fasting insulin and C-peptide levels; and total testosterone levels. IAF was re-measured after 7.5 y. Subcutaneous fat areas were also measured by CT in the abdomen, thorax and thigh. The total fat (TF) was calculated as the sum of IAF and total subcutanous fat areas (SCF).

RESULTS: After 7.5 y, IAF increased by a mean of 8.0 cm2 (95% CI: 0.8, 15.3). Baseline total testosterone was significantly correlated with change in IAF (r=−0.26, P=0.006), but not to any appreciable degree with change in BMI, TF, or SCF. In a linear regression model with change in IAF as the dependent variable, baseline testosterone was significantly related to this outcome while adjusting for baseline IAF, SCF, BMI, age, diabetes mellitus status (OGTT by the WHO diagnostic criteria) and fasting C-peptide (regression coefficient for baseline testosterone [nmol/l]=−107.13, P=0.003).

CONCLUSIONS: In this Japanese-American male cohort, lower baseline total testosterone independently predicts an increase in IAF. This would suggest that by predisposing to an increase in visceral adiposity, low levels of testosterone may increase the risk of type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ohlson LO, Larsson B, Svärdsudd K, Welin L, Eriksson H, Wilhelmsen L. Björntorp P, Tibblin G . The influence of body fat distribution on the incidence of diabetes mellitus Diabetes 1985 34: 1055–1058.

    Article  CAS  Google Scholar 

  2. Bottiger LE, Carson LA . Risk factors for ischemic vascular death for men in the Stockholm Prospective Study Atherosclerosis 1980 36: 389–408.

    Article  Google Scholar 

  3. Hubert HB, Feinleib M, McNamara PM, Castelli WP . Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study Circulation 1983 67: 968–977.

    Article  CAS  Google Scholar 

  4. Segal KR, Dunaif A, Gutin B, Albu J, Nyman A, Pi-Sunyer FX . Body composition, not body weight, is related to cardiovascular disease risk factors and sex hormone levels in men. J Clin Invest 1987 80: 1050–1055.

    Article  CAS  Google Scholar 

  5. Peiris AN, Sothman MS, Hoffman RG, Hennes MI, Wilson CR, Gustafson AB, Kissebah AH . Adiposity, fat distribution, and cardiovascular risk Ann Intern Med 1989 110: 867–872.

    Article  CAS  Google Scholar 

  6. Shuman WP, Morris LL, Leonetti DL, Wahl PW, Moceri VM, Moss AA, Fujimoto WY . Abnormal body fat distribution detected by computed tomography in diabetic men Invest Radiol 1986 21: 483–487.

    Article  CAS  Google Scholar 

  7. Sparrow D, Borkan GA, Gerzof SG, Wisniewski C, Silbert CK . Relationship of fat distribution to glucose tolerance. Results of computed tomography in male participants of the Normative Aging Study Diabetes 1986 35: 411–415.

    Article  CAS  Google Scholar 

  8. Thaete FL, Colberg SR, Burke T, Kelley DE . Reproducibility of computed tomography measurement of visceral adipose tissue area Int J Obes 1995 19: 464–467.

    CAS  Google Scholar 

  9. Bergstrom RW, Newell-Morris L, Leonetti DL, Shuman WP, Wahl PW, Fujimoto WY . Association of elevated fasting C-peptide and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men Diabetes 1990 39: 104–111.

    Article  CAS  Google Scholar 

  10. Rebuffé-Scrive M, Cullberg G, Lundberg P, Lindstedt G, Björntorp P . Anthropometric variables and metabolism in polycystic ovarian disease Horm Metab Res 1989 21: 391–397.

    Article  Google Scholar 

  11. Evans DJ, Hoffman RG, Kalkhoff RK, Kissebah AH . Relationship of androgenic activity to body fat topography, fat cell morphology, and metabolic aberrations in premenopausal women J Clin Endocrinol Metab 1983 57: 304–310.

    Article  CAS  Google Scholar 

  12. Glass AR, Swerdloff RS, Bray GA, Dahms W, Atkinson RL . Low serum testosterone and sex hormone binding globulin in massively obese men J Clin Endocrinol Metab 1977 45: 1211–1219.

    Article  CAS  Google Scholar 

  13. Giagulli VA, Kaufman JM, Vermeulen A . Pathogenesis of the decreased androgen levels in obese men J Clin Endocrinol Metab 1994 79: 997–1000.

    CAS  PubMed  Google Scholar 

  14. Seidell JC, Björntorp P, Sjöström LS, Kvist H, Sannerstedt R . Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels Metabolism 1990 39: 897–901.

    Article  CAS  Google Scholar 

  15. Haffner SM, Karhapää P, Mykkänen L, Laakso M . Insulin resistance, body fat distribution and sex hormones in men Diabetes 1994 43: 212–219.

    Article  CAS  Google Scholar 

  16. Haffner SM, Shten J, Sern MP, Smith GD, Kuller L . Low levels of sex hormone-binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men Am J Epidemiol 1996 143: 889–897.

    Article  CAS  Google Scholar 

  17. Tibblin G, Adlerberth A, Lindstedt G, Björntorp P . The pituitary–gonadal and health in elderly men Diabetes 1996 45: 1605–1609.

    Article  CAS  Google Scholar 

  18. Khaw KT, Barrett-Connor E . Lower endogenous androgens predict central adiposity in men Ann Epidemiol 1992 2:: 675–682.

    Article  Google Scholar 

  19. Phillips GB . Relationship between serum sex hormones and glucose, insulin, and lipid abnormalities in men with myocardial infarction Proc Nat Acad Sci USA 1979 74: 1729–1732.

    Article  Google Scholar 

  20. Simon D, Preziosi P, Barrett-Connor E, Roger M, Saint-Paul M, Nahoul K, Papoz L . Interrelation between plasma testosterone and plasma insulin in healthy adult men: the Telecom Study Diabetologia 1992 35: 173–177.

    Article  CAS  Google Scholar 

  21. Phillips GB . Relationship between sex hormones and the glucose insulin–lipid defect in men with obesity Metabolism 1993 42: 116–120.

    Article  CAS  Google Scholar 

  22. Pasquali R, Casimirri F, Cantobelli S, Melchionda N, Morselli-Labate AM, Fabbri R, Capelli M, Bortoluzzi L . Effect of obesity and body fat distribution on sex hormones and insulin in men Metabolism 1991 40: 101–104.

    Article  CAS  Google Scholar 

  23. Haffner SM, Valdez RA, Mykkänen L, Stern MP, Katz MS . Decreased free testosterone and dehydroepiandrosterone sulfate are associated with decreased glucose and insulin concentrations in non-diabetic men Metabolism 1994 43: 599–603.

    Article  CAS  Google Scholar 

  24. Mårin P, Holmäng S, Jönsson L, Sjöström L, Kvist H, Holm G, Lindstedt G, Björntorp P . The effect of testosterone treatment on body composition and metabolism in middle aged obese men Int J Obes 1992 16: 991–997.

    Google Scholar 

  25. Andersson B, Mårin P, Lissner L, Vermeulen A, Björntorp P . Testosterone concentrations in women and men with NIDDM Diabetes Care 1994 17: 405–411.

    Article  CAS  Google Scholar 

  26. Fujimoto WY, Bergstrom RW, Boyko EJ, Kinyoun JL, Leoneti DL, Newell-Morris LL, Robinson LR, Shuman WP, Stolov WC, Tsunehara CH, Wahl PW . Diabetes and diabetes risk factors in second- and third-generation Japanese Americans in Seattle, Washington Diabetes Res Clin Pract 1994 24: S43–S52.

    Article  Google Scholar 

  27. Fujimoto WY, Leonetti KL, Kinyoun JL, Newell-Morris L, Shuman WP, Stolov WC, Wahl PW . Prevalence of diabetes mellitus and impaired glucose tolerance among second generation Japanese-American men Diabetes 1987 36: 721–729.

    Article  CAS  Google Scholar 

  28. World Health Organization Expert Committee . Second report on diabetes mellitus, 1980 WHO Technical Report Series No. 646 1980.

    Google Scholar 

  29. De Pergola G, Giagulli Va, Garruti G, Cospite MR, Giorgino F, Cignarelli M, Giorgino R . Low dehydroepiandrosterone circulating levels in premenopausal obese women with very high body mass index Metabolism 1991 40: 187–190.

    Article  CAS  Google Scholar 

  30. Giagulli VA, De Pergola G, Giorgino F, Cignarelli M, Abbaticchio G, Vermeulen A, Giorgino R . Increased free testosterone but normal 5a-reduced testosterone metabolites in obese premenopausal women Clin Endocrinol Oxf 1992 36: 553–558.

    Article  CAS  Google Scholar 

  31. Stanik S, Dornfeld LP, Maxwell MH, Viosca SP, Korenman SG . The effect of weight loss on reproductive hormones. J Clin Endocrinol Metab 1981 53: 828–831.

    Article  CAS  Google Scholar 

  32. Glass AR, Burman KD, Dahms WT, Boehm TM . Endocrine function in obesity Metabolism 1981 30: 89–104.

    Article  CAS  Google Scholar 

  33. Vermeulen A, Kaufman JM, Deslypere JP, Thomas G . Attenuated LH pulse amplitude but normal LH pulse frequency and its relation to plasma androgens in hypogonadism of obese men J Clin Endocrinol Metab 1993 76: 1140–1146.

    CAS  PubMed  Google Scholar 

  34. Seidell JC, Björntorp P, Sjöström L, Sannerstedt R, Krotkiewski M, Kvist H . Regional distribution of muscle and fat mass in men—new insight into the risk of abdominal obesity using computed tomography Int J Obes 1989 13: 289–303.

    CAS  PubMed  Google Scholar 

  35. Mårin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, Holm G, Sjöström L, Björntorp P . The morphology and metabolism and intra-abdominal adipose tissue in men Metabolism 1992 41: 1242–1248.

    Article  Google Scholar 

  36. Mårin P, Lönn L, Andersson B, Odén B, Olbe L, Bengtsson, Björntorp P . Assimilation of triglycerides in subcutaneous and intra-abdominal adipose tissue in vivo in men: effects of testosterone J Clin Endocrinol Metab 1996 81: 1018–1022.

    PubMed  Google Scholar 

  37. Hellmer J, Marcus C, Sonnenfeld T, Arner P . Mechanisms for differences in lipolysis between human subcutaneous and omental fat cell J Clin Endocrinol Metab 1992 75: 15–20.

    CAS  PubMed  Google Scholar 

  38. Richelsen B, Pedersen SB, Moller-Pedersen T, Bak JF . Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E2 Metabolism 1991 40: 990–996.

    Article  CAS  Google Scholar 

  39. Mauriege P, Galitzky J, Berlan M, Lafontan M . Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences Eur J Clin Invest 1987 17: 156–165.

    Article  CAS  Google Scholar 

  40. Xu X, De Pergola G, Björntorp P . Steroid hormone effects on adipose tissue growth and metabolism. In: Crepaldi G, Tiengo A, Enzi G (eds) Diabetes, obesity and hyperlipidemias IV: Proceedings of the 5th European Symposium on Metabolism. Elsevier: Amsterdam, 1990, pp 173–178.

    Google Scholar 

  41. Rebuffé-Scrive M, Mårin P, Björntorp P . Effect of testosterone on abdominal adipose tissue in men Int J Obes 1991 15: 791–795.

    PubMed  Google Scholar 

  42. Mårin P, Odén B, Björntorp P . Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens J Clin Endocrinol Metab 1995 80: 239–243.

    PubMed  Google Scholar 

  43. Sjogren J, Li M, Björntorp P . Androgen hormone binding to adipose tissue in rats Biochim Biophys Acta 1995 1244: 117–120.

    Article  CAS  Google Scholar 

  44. Boyko EJ, Leonetti DL, Bergstrom RW, Newell-Morris L, Fujimoto WY . Visceral adiposity, fasting plasma insulin, and blood pressure in Japanese-Americans Diabetes Care 1995 18: 174–181.

    Article  CAS  Google Scholar 

  45. Boyko EJ, Leonetti DL, Bergstrom RW, Newell-Morris L, Fujimoto WY . Visceral adiposity, fasting plasma insulin, and lipid and lipoprotein levels in Japanese Americans Int J Obes 1996 20: 801–808.

    CAS  Google Scholar 

  46. Randle PJ, Garland PB, Hales CN, Newsholme EA . The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus Lancet 1963 i: 785–789.

    Article  Google Scholar 

  47. Boden G . Role of fatty acids in he pathogenesis of insulin resistance and NIDDM Diabetes 1997 46: 3–10.

    Article  CAS  Google Scholar 

  48. Boyko EJ, Leonetti DL, Bergstrom RW, Newell-Morris L, Fujimoto WY . Low insulin secretion and high fasting insulin and C-peptide levels predict increased visceral adiposity Diabetes 1996 45: 1010–1015.

    Article  CAS  Google Scholar 

  49. Tchernof A, Després JP, Dupont A, Belanger A, Nadeau A, Prud'homme D, Moorjani S, Lupien PJ, Labrie F . Relation of steroid hormones to glucose tolerance and plasma insulin levels in men Diabetes Care 1995 18: 292–299.

    Article  CAS  Google Scholar 

  50. Haffner SM, Valdez RA, Morales PA, Hazuda HP, Stern MP . Decreased sex hormone-binding globulin predicts non-insulin dependent diabetes mellitus in women but not in men J Clin Endocrinol Metab 1993 77: 56–60.

    CAS  PubMed  Google Scholar 

  51. Laakso M . How good a marker is insulin level for insulin resistance? Am J Epidemiol 1993 137: 959–965.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK 31170, HL 49293, RR 00037, DK 35816 and DK 17047. Dr Tsai is supported by a Health Services fellowship from the Health Services Research and Development, US Department of Veterans Affairs. We wish to thank Ms Jane Shofer for her skilled technical support in maintaining the JACDS database. We are grateful to the King County Japanese American Community for their support and cooperation

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, E., Boyko, E., Leonetti, D. et al. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int J Obes 24, 485–491 (2000). https://doi.org/10.1038/sj.ijo.0801183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801183

Keywords

This article is cited by

Search

Quick links