
© 1903 Nature Publishing Group

jANUARY 29, 1903] NATURE 297 

herbarium were saved, passing into the hands of Nicola Cirillo 
(1671-1734), a physician and botanist who possessed a private 
botanical garden and was a Fellow of the Royal Society of 
London, for which Society he collected data on the climate of 
Naples, and wrote a treatise on the application of cold in the 
treatment of fevers. Remaining in the Cirillo family, the 
herbarium was finally bequeathed to the celebrated botanist 
Domenico Cirillo, who preserved these volumes as the most 
precious treasure in his collections. In 1783, Martin Vahl, a 
friend of Linnreus, saw Imperato's herbarium in Cirillo's house, 
and it is said that he fell on his knees in reverence before the 
ancient relic. In 1799, when the royalist mob sacked Cirillo's 
house and Cirillo himself was hanged, all his collections were 
dispersed, including the herbarium of Imperato. Of the nine 
volumes only one was saved, and finally came into the hands 
of Camillo Minieri-Riccio, who in 1863 published a short 
account of this botanical relic (C. Minieri·Riccio: "Breve 
notizia dell' Erbario di Ferrante Imperato," Rendiconti del( 
Ar,cademia Pontaniana, xi., 1863). Minieri says that Imperato's 
name is written in the volume. 

The collections of Minieri-Riccio were finally sold to the 
National Library at Naples, where the volume of Imperato's 
herbarium may now be seen. 

The volume, of 268 pages, is bound in parchment and 
is labelled "Collectio Plantarum Naturalium." It contains 440 
plants, glued to the paper, each with one or more names. 
There is an alphal:>etical index, written by Imperato 
himself. 

The authorities in the Naples library do not seem aware of the 
importance of the relic they possess, for the herbarium is kept 
as an ordinary book and the plants are exposed to inevitable 
damage and decay. Several of the specimens have already 
been eaten up by insects. ITALO GIGLIOLI. 

R. Stazione Agraria Sperimentale, Rome, January 8. 

A Curious Projectile Force. 

I AM able to corroborate B.A. Oxon.'s letter (p. 247). In my 
case, the screw stopper of the bottle (inverted) rested at an angle 
against some books on a table. When the pressure of the gas 
was sufficient to force out the stopper, the bottle sprang three 
or four feet into the air and fell some distance off on the floor 
of the room. NORMAN LOCKYER. 

The Principle of Least Action. Lagrange's Equations. 

WHETHER good mathematicians, when they die, go to Cam
bridge, I do not know. But it is well known that a large 
number of men go there when they are young for the purpose 
of being converted into senior wranglers and Smith's prizemen. 
N >w at Cambridge, or somewhere else, there is a golden or 
brazen idol called the Principle of Least Action. Its exact 
locality is kept secret, but numerous copies have been made and 
distributed amongst the mathematical tutors and lecturers at 
Cambridge, who make the young men fall down and worship 
the idol. 

I have nothing to say against the Principle. But I think a 
great deal may be S:tid against the practice of the Principle. 
Truly, I have never practised it myself (except with pots and 
pans), but I have had many opportunities of seeing how the 
practice is done. It is usually employed by dynamicians to 
investigate the properties of mediums transmitting waves, the 
elastic solid for example, or generalisations or modifications of 
the same. It is used to find equations of motion from energetic 
data. I observe that this is done, not by investigating the 
actual motion, but by investigating departures from it. Now 
it is very unnatural to vary the time integral of the excess of 
the total kinetic over the total potential energy to obtain the 
eq•tations of the real motion. Then again, it requires an in
tegration over all space, and a transformation of the integral 
betore what is wanted is reached. This, too, is very unnatural 
(though defensible if it were labour-saving), for the equation of 
motion at a given place in an elastic medium depends only 
upon its structure there, and is quite independent of the rest of 
the medium, which may be varied anyhow. Lastly, I observe 
that the process is complicated and obscure, so much so as to 
easi I y lead to error. 

Why, then, is the P. of L. A. employed? Is not Newton's 
dynamics good enough? Or do not the Least·Actionists know 
that Newton's dynamics, viz. his admirable Force= Counter-
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force and the connected Activity Principle, can be directly 
applied to construct the eq nations of motion in such cases as 
above referred to, without any of the hocus pocus of departing 
from the real motion, or the time integration, or integration 
over all space, and with avoidance of much of the complicated 
work. It would seem not, for the claim is made for the P. of 
L. A. that it is a commanding general process, whereas the 
principle of energy is insufficient to determine the motion. This 
is wrong. But the P. of L. A. mr.y perhaps be particularly 
suitable in special cases. It is against its misuse that I write. 

Practical ways of working will naturally depend upon the 
data given. We may, for example, build up an equation of 
motion by hard thinking about the structure. This way is 
followed by Kelvin, and is good, if the data are sufficient and 
not too complicated. Or we may, in an elastic medium, assume 
a general form for the stress and investigate its special properties. 
Of course, the force is derivable from the stress. But the data 
of the Least-Actionists are expressions for the kinetic and 
potential energy, and the P. of L. A. is applied to them. 

But the Principle of Activity, as understood by Newton, 
furnishes the answer on the spot. To illustrate this simply, let 
it be only small motions of a medium like Green's or the same 
generalised that are in question. Then the equation of 
activity is 

(!) 

that is, the rate of increase of the stored energy is the conver
gence of the flux of energy, which is - qP, if q is the velocity 
and P the stress operator, such that 

Pi=P1 =iPn +jP12 +kP13 (2) 

is the stress on the i plane. Here qP is the conjugate of Pq. 
By carrying out the divergence operation, (r) splits into two, 

thus 
Fq=T, Gq=U. (3) 

Here F is a real vector, being the force, whilst G is a vector 
force operator. Both have the same structure, viz. Pv, but in 
F the differentiators in v act on P, whereas in G they are free 
and act on q, if they act at all. 

Now when U is given, U becomes known. It contains q as 
an operand. Knock it out ; then G is known; and therefore F ; 
and therefore the equation of motion is known, viz. 

F= !!..(mq), 
dt 

where m is the density, or the same generalised eolotropically, 
or in various other ways which will be readily understood by 
electricians who are acquainted with resistance operators. 

Of course, P becomes known also. So the form of U specifies 
the stress, the translational force and the force operator of the 
potential energy. To turn G to F is the same as turning 
A.:!_ to dA. 

dx dx 
If, for example, the displacement is D, the potential energy 

is a quadratic function of the nine differentiants dD1fdx, &c., of 
the components. Calling these rw r 12, &c. ; 

dU 1 dU 
U = + :!r12--- + (4) 

drn dr12 

by the homogeneous property. Therefore, since r12 =aq1/dy= 
idqfdy, 

i .'!... + dU i cj_ + .. ·)q=Gq; (5) 
dr11 dx dr12 dy 

therefore, writing P21 for dU!dr12 , 

F=i(dPn +dP2l + 
dx d)' dz 

(6) 

= dP1 + _dP2 + dP3• 

dx dy dz (7) 

It is clear that the differentiants in (4) (which involve the large 
number 45 of coefficients of elasticity in the general case of 
eolotropy) are the nine components of the conjugate of the 
stress operator. Of course, vector analysis, dealing with the 
natural vectors concerned, is the most suitable working agent, 
but the same work may be done without it by taking the terms 
involving q1, q2 , q3 separately. 

Another expression for U is U = which shows how to 
find F from U directly. 
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